Sup and Inf
(1) $\quad \sup (A+B)=\sup A+\sup B$
where $A+B=\{a+b: a \in A$ and $b \in B\}$
(2)
$\operatorname{sexp}\{f(x)+g(x): x \in X\} \leqslant \sup \{f(x): x \in X\}+\sup \{g(x): x \in X\}$
This is §2.3\#6 and if is assigned.

Cardinality
Observe that if A has n elements, we can write A as $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$. From the Pigeonhole Principle (Section 1.1, Exercise 8), which states that if there are m pigeons and n pigeonholes with $m>n$, then at least two pigeons must get in the same hole, it is clear that there cannot be a bijection from a finite set onto a proper subset of itself. From the paragraph preceding Definition 2.10, this is not the case with infinite sets.

Proposition 2.8 Let A and B be sets.

1. If A is finite and $A \sim B$, then B is finite.
2. If B is infinite and $A \sim B$, then A is infinite.
3. If A is finite and $B \subset A$, then B is finite.
4. If B is infinite and $B \subset A$, then A is infinite.
means there is no bijection between a finite set and a strict subset of theist finite sect.

Proof For part 1, first note that if A is empty, then so is B. Otherwise, $A \sim$ $\{1,2, \ldots, n\}$ for some n in \mathbb{N}. Since \sim is transitive, $B \sim\{1,2, \ldots, n\}$.

For part 4, note that it is the contrapositive of part 3. The rest of the proof is left as an exercise.

Proposition 2.9 Let A and B be sets.

1. If A is finite and there exists a function f from A onto B, then B is finite.
2. If A is infinite and there exists a one-to-one function from A into B, then B is infinite.

Propose: ion

$$
N \sim\{2,3,9, \ldots\} \equiv \mathbb{N} \backslash\{1\}
$$

That is IN and INL ξ I have the save number of elements.

$$
\left\{\begin{array}{l}
f: \mathbb{N} \rightarrow \mathbb{N} \backslash\{1\} \\
f(n)=n+1
\end{array}\right.
$$

Properiction If $B \subseteq A$ and A is countable then B is countable.

Core: If $\sqrt{5}$ is finite there it's coumable.
Thus we can assume B is infinite. Since $B \subseteq A$ then A must be infinite. Since A is countable by leypothesis them $A \sim \mathbb{N}$. Therefore there is a pewelion $f: \mathbb{N} \rightarrow A$ such that f is a bijection.

$$
\begin{aligned}
& A=f(\mathbb{N})=\{f(1), f(2), f(3), \ldots\} \\
& \text { notation } x_{i}=f(i) \\
& A=\left\{x_{1}, x_{2}, x_{3}, \ldots\right\} .
\end{aligned}
$$

Since \mathbb{N} is well ordered there is a smallest m_{1} such that $x_{n_{1}} \in B$.

$$
e=\left\{n: x_{n} \in B\right\} \subseteq \mathbb{N}
$$

Let x_{1} be the smallest swan that $x_{n_{1}} \in B$
Tet $n_{2}>n_{1}$ be the smallest such that $x n_{2} \in B$

$$
e_{1}=\left\{\eta>R_{1}: x_{n} \in B\right\} \subseteq \mathbb{N}
$$

Tet $n_{3}>n_{2}$ be the smallest such that $x n_{3} \in B$

Claion $B=\left\{x_{x_{1}}, x_{n_{2}}, x_{n_{3}} \ldots\right\}$.
For contradiction, suppose $B \neq\left\{x_{n_{1}}, x_{n_{2}}, \ldots\right.$. Clearly $B \geqslant\left\{x_{n_{1}}, x_{n_{2}}, \ldots\right\}$ be cause they were chosen flat way
Thus there must be a $b \in B$ such that $b \neq x_{n i}$ for all $i \in \mathbb{N}$. Sauce $b \in B$ then $b \in A$ and so there is k seen that $b=x_{k}$.
Core $k<q_{1}$ or there is i s.t. $n_{i-1}<k<n_{i}$ If $k<n_{1}$ then

Jet x_{1} be the smallest swoon that $x_{n_{1}} \in B$ would imply $n_{1} \leq K$. Contradiction

If $n_{i-1}<k<n_{i}$ then
Tet $n_{i}>n_{i-1}$ be the smallest such that $x n_{i} \in B$ implies $n_{i} \leqslant k$. Coutraduetion.

Lemma: $\mathbb{N} \times \mathbb{N}$ is countable.
obviously not Flite, so need to show $N \times \mathbb{N}$ is countably inlicuites.
Let $f: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ be given as

$$
f(n, m)=2^{n} 3^{m}
$$

Click f is an injection (ie. one-to-one)
suppose $f(n, m)=f(r, s)$. Then

$$
2^{n} 3^{m}=2^{r} 3^{s}
$$

Claim $x=r$ and $x=5$. Why?
Case $n>r$. Then $2^{n-r}=3^{s-m}$.
since $n>r$ there are sone a's hone
Thus 2 divides 3^{s-m}
so 2 decides lifter 1 or 3 which is a contradiction.
Case $n<r$. Then $2^{r-n}=3^{n-s}$
Some argument giver a contradiction.
Coss $n=r$. $\quad 2^{n-r}=1=3^{5-m}$ so $s=m$.
Recede $f: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$

$$
f(n, m)=a^{n} 3^{m}
$$

Define $B=f(\mathbb{N} \times \mathbb{N})$ so $f: \mathbb{N} \times \mathbb{N} \rightarrow B$ is a bijection
so $N N \mathbb{N} \sim B$
since $B \subseteq \mathbb{N}$ Thus B is countable so $A \times \mathbb{N}$ is countable.

