Observe that if A has n elements, we can write A as $\{x_1, x_2, ..., x_n\}$. From the Pigeonhole Principle (Section 1.1, Exercise 8), which states that if there are m pigeons and n pigeonholes with m > n, then at least two pigeons must get in the same hole, it is clear that there cannot be a bijection from a finite set onto a proper subset of itself. From the paragraph preceding Definition 2.10, this is not the case with infinite sets.

Proposition 2.8 Let *A* and *B* be sets.

- 1. If A is finite and $A \sim B$, then B is finite.
- 2. If B is infinite and $A \sim B$, then A is infinite.

3. If A is finite and $B \subset A$, then B is finite.

4. If B is infinite and $B \subset A$, then A is infinite.

means there is no bijection between a finite set and a strict subset of that finite set.

Proof For part 1, first note that if A is empty, then so is B. Otherwise, $A \sim \{1, 2, ..., n\}$ for some n in N. Since \sim is transitive, $B \sim \{1, 2, ..., n\}$.

For part 4, note that it is the contrapositive of part 3. The rest of the proof is left as an exercise.

Proposition 2.9 Let A and B be sets.

- 1. If A is finite and there exists a function f from A onto B, then B is finite.
- 2. If A is infinite and there exists a one-to-one function from A into B, then B is infinite.

Proposition N~ Z2,3,9, ... Z= NZIZ That is M and MIZIZ have the same number of elements. Bijection $5f: \mathbb{N} \rightarrow \mathbb{N} \setminus \xi I \xi$ f(n) = m + IIf BEA and Ais countable than Bis Proposition countable. Case: If B is finite there it's counable. Thus we can assume B is infinite. Since BSA then A must be trainite. Since A is courtable ky hypothesis than ANIN. Therefore dhere is a function f: N+A such that f is a bijection. $A = f(M) = \{f(n), f(2), f(3), \dots, \xi\}$ notation x;=f(i) A = { x1, x2, x3, ... 3. Since N is well ordered there is a smallest m, such that $x_n, \in B$. $C = \{n : x_n \in B\} \subseteq \mathbb{N}$ Net my be the smallest such that 2n, 0B Yet M2>M1 bethe smallest such that Zn2 EB $e_1 = \{n > n_1 : x_n \in B \} \subseteq \mathbb{N}$ Yet my>my better smallest such that Zng EB

Claim
$$B = \{ z_{n_1}, z_{n_2}, z_{n_3}, \dots, \}$$
.
For contradiction, suppose $B \neq \{ z_{n_1}, z_{n_2}, \dots, \}$.
Clearly $B \ge \{ z_{n_1}, z_{n_2}, \dots, \}$ be cause they ever
chosen that only and
there there must be a bGB such that $b \neq z_{n_1}$ for
all iGN. Gree bGB then bGA and so there
is k such react $b = z_{n_2}$.
Care $k < n_1$ or there is is.t. $n_{i-1} < krm_i$
If $k < n_1$ then
Set n_1 be the smallest such that $z_{n_1} \otimes B$
about it supply $m_1 \le k$. Contradiction
If $n_{i-1} < k < n_i$ then
Net $n_i > n_{i+1}$ be the smallest such that $z_{n_1} \otimes B$
implies $n_1 \le k$. Contradiction.
Lemma: $N \ge n_{i+1} \ge n_{i+1} \ge 1$ and $z_{n_1} \otimes B$
 $f = n_1 \le n_1 \le n_1 \le 1$ and $z_{n_2} \otimes B$
 $M \ge n_1 \le k$. Contradiction.
Lemma: $N \le N \ge n_1 \le 1$ and $z_{n_2} \otimes B$
 $f = n_1 \le N \le N \ge n_2$ and $z \ge 1$.
Set $f : N \le N \ge n_2$ be given as
 $f(n,m) = a^n B^m$.

Chien it is an injection (i.e. one-to-one) Suppose f(n,m) = f(r,s). Then $2^{n}3^{m} = 2^{c}3^{s}$ Chian n=r and m=s. Why? Case n > r. Then $2^{n-r} = 3^{s-m}$ t since m>r there are some 2's have Thus 2 dévides 35-m 90 2 desides little 1 05 3 possell is a contradiction. Case n < r. Thus $2^{r-n} = 3^{n-s}$ Some argament gives a contradiction. $2^{n-r} = 1 = 3^{5-m}$ so 5=m. (or ner. PRede P:NXN > N $f(n,m) = a^n 3^m$ Define B=f(N×N) so f:N×N>B is a bijection SO MANNOB since BSIN B is countable Thus MrIN TS countable. So