Given $f: X \rightarrow Y$.
True or False: $\quad f^{-1}(S \cap T)=f^{-1}(s) \cap f^{-1}(\tau)$ for $S, T \subseteq Y$. \checkmark "®" Let $x \in f^{-1}(S \cap T)$ then $f(x) \in S \cap T$ Thus $f(x) \in S$ and $f(x) \in T$.
That means $x \in f^{-1}(G)$ and $x \in f^{-1}(T)$.
Therefore $\quad x \in f^{-1}(s) \cap f^{-1}(\tau)$
" Z " Leos $x \in f^{-1}(s) \cap f^{-r}(\tau)$
Since all the steps for the " \subseteq "r collusion sore reversitsle, then $x \in f^{-r}(S \cap T)$.

Proposition 1.12 Let f be a function from X into Y and let g be a function from Y into Z.

1. If both f and g are one-to-one, then so is $g \circ f$.
2. If both f and g are onto functions, then so is $g \circ f$.
3. If both f and g are bijections, then so is $g \circ f$.

If f is a decreasing feucition and g is a decreasing function, the is got also decreasing?

NO!
\mathbb{N} is Well-Ordered. Every nonempty subset of \mathbb{N} has a least element. That is, if $A \subset \mathbb{N}$ and $A \neq \emptyset$, then there is an a_{0} in A such that $a_{0} \leq a$ for all a in A.

Interesting, because we are interested in making. only a minus number of assenueftibus as axiovis from which to develop the rest 4 Calcerlus.
\mathbb{N} wall ordered is egeiaralunt to sancty thad induction con be used to prove $p(n)$ for all $n \in \mathbb{I}$.

Byy the end of this chapter, the reader should understand the difference between the real numbers and the rational numbers. In Section 2.1, we note that both are fields with an order relation. However, in Sections 2.2 and 2.3, we show that the real numbers are "complete" whereas the rational numbers are not complete. In Section 2.4, we show that the rational numbers are "countable" but that the real numbers are "uncountable."

