9. Let A be a nonempty bounded subset of  $\mathbb{R}$  with  $\alpha = \sup A$  and  $\beta = \inf A$ . Show that A contains a monotone increasing sequence with limit  $\alpha$  and that A contains a monotone decreasing sequence with limit  $\beta$ . [Hint: By Theorem 3.9 it suffices to find a sequence in A with limit  $\alpha$ . Consider two cases:  $\alpha$  in A and  $\alpha$  in  $\mathbb{R} \setminus A$ .]

reco)

**Theorem 3.9** (Monotone Subsequence Theorem) Every sequence in  $\mathbb{R}$  has a monotone subsequence.

this too work

**Proof** Let  $(x_n)_{n\in\mathbb{N}}$  be a sequence in  $\mathbb{R}$ . For the purpose of this proof, we call the *m*th term  $x_m$  a <u>peak</u> if  $x_m \ge x_n$  for all  $n \ge m$ . That is,  $x_m$  is a peak if  $x_m$  is never exceeded by any term that follows it.

9. Let A be a nonempty bounded subset of  $\mathbb{R}$  with  $\alpha = \sup A$  and  $\beta = \inf A$ . Show that A contains a monotone increasing sequence with limit  $\alpha$  and that A contains a monotone decreasing sequence with limit  $\beta$ . [Hint: By Theorem 3.9 it suffices to find a sequence in A with limit  $\alpha$ . Consider two cases:  $\alpha$  in A and  $\alpha$  in  $\mathbb{R} \setminus A$ .]

Proof

Case  $\alpha \in A$ : Then take  $\alpha_n = \alpha$  for all n. Note that the constant sequence is monotone increasing (or decreasing) and  $\alpha_n - \alpha_n$ .

Case  $\alpha \notin A$ . Let  $\mathcal{E}_n = \frac{1}{n}$ . Note  $\mathcal{E}_n > 0$  and  $\mathcal{E}_n > 0$  as  $n > \infty$ .

Since  $\alpha \notin A$ . Let  $\mathcal{E}_n = \frac{1}{n}$ . Note  $\mathcal{E}_n > 0$  and  $\mathcal{E}_n > 0$  as  $n > \infty$ .

Since  $\alpha \notin A$ , then  $\kappa - \mathcal{E}_n$  is upper bound, there is  $x_n \in A$  such that  $\alpha \in A$ .

Claim on -> x on n-7 so

| Why? Suppose E>D. They by the Archemedian                                                                                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Why? Suppose E>O. Then by the Archemedian proceiper there is MoEIN such that \frac{1}{100} \in                           |
|                                                                                                                                                              |
| Note $\alpha - \epsilon_n < \alpha < $                                               |
| Thun for $n \ge n_0$ we have                                                                                                                                 |
|                                                                                                                                                              |
| xn-d  = α-xn < α-(εn-d) = εn= n < n < ε.                                                                                                                     |
| By Theorem 3.9 (Xn) nEN has a monotone subsequence                                                                                                           |
| (2Chr) REIN. Claim (XIL) REIN is increasing.                                                                                                                 |
|                                                                                                                                                              |
| Suppose, for contradiction, it were decreasing,<br>Note sine (2nk) kops is monotone it must be within<br>monotone increasing, monotone decreasing (or both). |
| Note sine (2nx) kons is monofour it must be within                                                                                                           |
| monotone increasing, monotone decreasing (or both).                                                                                                          |
|                                                                                                                                                              |
| Then $x_n \leq x_n$ , for all $k \in \mathbb{N}$                                                                                                             |
| Since $x_{n_1} < x$ then $-x < -x_{n_1} < -x_{n_k}$                                                                                                          |
|                                                                                                                                                              |
| $ x_{NK}-y =x-x_{NK}>x-x_{N}>0$                                                                                                                              |
| $\mathcal{E} \simeq \mathcal{A} - \mathcal{I}_{\mathbf{u}}$                                                                                                  |
| Which means buixn + &. But I know it converges                                                                                                               |
| E ~ 139                                                                                                                                                      |
| So the only alternative is that (2cm) wern is increasing.                                                                                                    |
|                                                                                                                                                              |
|                                                                                                                                                              |

**Proposition 3.9** Let  $(x_n)_{n\in\mathbb{N}}$  be a sequence in  $\mathbb{R}$ . Then  $\limsup x_n$  and  $\liminf x_n$  are both in E.

read for next time...

Change notation so it makes surse to you...