9. Let A be a nonempty bounded subset of R with @ = sup A and g = inf A.
Show that A contains a monotone increasing sequence with limit e and
that A contains a monotone decreasing sequence with limit g. [Hint: By
Theorem 3.9 it suffices to find a sequence in A with limit «. Consider two

cases: ainAandain R\ A.] :
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Theorem 3.9 (Monotone Subsequence Theorem) Every sequence in R has
- a monotone subsequence.

9 X . .
o N Proof Let (x,),en be a sequence in R. For the purpose of this proof, we call

¥ &? the mth term x,, a peak if x,, > x, for all. n > m. That is, x,, is a peak if x,, is
’ujkL: / |

never exceeded by any term that follows it.

9. Let A be a nonempty boundedlsel of & witha = sup A and 8 = infgA.
Show that A contains a mof®tone incréasing sequence with limit @ and
that A contains a monotone decreasing sequence with limit g. [Hint: By
Theorem 3.9 it suffices to find a sequence in A with limit . Consider two
cases: ain Aandain R\ A.]
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Proposition 3.9 Let (x,),cn be a sequence in E. Then limsupx, and

liminf x,, are both in E.
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