Math 310 Sample Final Exam Version A

1. Let $f: I \rightarrow \mathbf{R}$ with $c \in I$. Then f has a local minimum at c if and only if \qquad
2. A sequence $\left(x_{n}\right)_{n \in \mathbf{N}}$ in \mathbf{R} is monotone increasing if and only if \qquad
3. A function $f: X \rightarrow Y$ is a bijection if and only if \qquad _.
4. Let $f: I \rightarrow \mathbf{R}$ with $c \in I$. Then f has a local maximum at c if and only if \qquad .
5. A set A is countable if and only if \qquad
6. A sequence $\left(x_{n}\right)_{n \in \mathbf{N}}$ in \mathbf{R} is monotone decreasing if and only if \qquad
7. Let A be a subset of \mathbf{R}. Then A is dense in \mathbf{R} if and only if \qquad -.
8. A function $f: D \rightarrow \mathbf{R}$ is continuous at c if and only if \qquad —.
9. A function $f: D \rightarrow \mathbf{R}$ is uniformly continuous on D if and only if \qquad
10. The limit of f at c is L or $\lim _{x \rightarrow c} f(x)=L$ if and only if \qquad —.
11. A sequence $\left(x_{n}\right)_{n \in \mathbf{N}}$ in \mathbf{R} is Cauchy if and only if \qquad .
12. f has a discontinuity of the first kind at c if and only if \qquad -.

Answers:
(A) $\quad x_{n} \leq x_{n+1}$ for all n in \mathbf{N}.
(B) there is a neighborhood U of c such that $f(x) \leq f(c)$ for all $x \in U \cap I$.
(C) both $f(c+)$ and $f(c-)$ exist in \mathbf{R} and $f(c+) \neq f(c-)$.
(D) $\forall \epsilon>0 \exists n_{0} \in \mathbf{N}$ such that if $n \geq n_{0}$ and $m \geq n_{0}$ then $\left|x_{n}-x_{m}\right|<\epsilon$.
(E) for every x and y in \mathbf{R} with $x<y$ one has $A \cap(x, y) \neq \emptyset$.
(F) $\quad x_{n} \geq x_{n+1}$ for all n in \mathbf{N}.
(G) for all $\epsilon>0$ there is a $\delta>0$ such that if x and y are in D with $|x-y|<\delta$ then $|f(x)-f(y)|<\epsilon$.
(H) there is a neighborhood U of c such that $f(x) \geq f(c)$ for all $x \in U \cap I$.
(I) f is one-to-one and onto Y.
(J) for all $\epsilon>0$ there is a $\delta>0$ such that if x is in D and $0<|x-c|<\delta$ then $|f(x)-L|<\epsilon$.
(K) A is finite or A is countably infinite.
(M) for every neighborhood V of $f(c)$ there is a neighborhood U of c such that if x is in $U \cap D$ then $f(x)$ is in V.

Math 310 Sample Final Exam Version A
13. $x=\sup S$ if and only if \qquad $-$
14. $\limsup _{x \rightarrow \infty} x_{n}$ is defined as \qquad
15. $\lim _{n \rightarrow \infty} x_{n}=-\infty$ if and only if \qquad
16. $\lim _{n \rightarrow \infty} x_{n}=x$ for $x \in \mathbf{R}$ if and only if \qquad
17. $\liminf _{x \rightarrow \infty} x_{n}$ is defined as \qquad
18. Let $A \subseteq \mathbf{R}$ and $x \in \mathbf{R}$. Then x is an accumulation point of A if \qquad
19. $\lim _{n \rightarrow \infty} x_{n}=\infty$ if and only if \qquad
20. $x=\inf S$ if and only if \qquad
21. Let $f: X \rightarrow Y$ and $A \subseteq X$. The direct image $f(A)$ is defined as \qquad
22. Let $f: X \rightarrow Y$ and $A \subseteq Y$. The inverse image $f^{-1}(A)$ is defined as \qquad
23. Let \mathcal{U} be a collection of sets. Then $\bigcup \mathcal{U}$ is defined as \qquad _.
24. Let \mathcal{U} be a collection of sets. Then $\bigcap \mathcal{U}$ is defined as \qquad ـ.

Answers:
(A) for all $\beta<0$ there exists $n_{0} \in \mathbf{N}$ such that if $n \geq n_{0}$ then $x_{n}<\beta$.
(B) $\{x: x \in A$ for all $A \in \mathcal{U}\}$.
(C) $\quad \inf \left\{x \in \mathbf{R}^{\#}: x_{n_{k}} \rightarrow x\right.$ for some subsequence $\left(x_{n_{k}}\right)_{k=1}^{\infty}$ of $\left.\left(x_{n}\right)_{n \in \mathbf{N}}\right\}$.
(D) for all $\epsilon>0$ there exists $n_{0} \in \mathbf{N}$ such that if $n \geq n_{0}$ then $\left|x_{n}-x\right|<\epsilon$.
(E) $\{x \in X: f(x) \in A\}$.
(F) $\quad\{x: x \in A$ for at least one $A \in \mathcal{U}\}$.
(G) for all $s \in S$ then $x \geq s$ and if γ is a upper bound of S then $\gamma \geq x$.
(H) if every neighborhood of x contains a point of A different from x.
(I) for all $\alpha>0$ there exists $n_{0} \in \mathbf{N}$ such that if $n \geq n_{0}$ then $x_{n}>\alpha$.
(J) $\quad\{f(a): a \in A\}$.
(K) $\sup \left\{x \in \mathbf{R}^{\#}: x_{n_{k}} \rightarrow x\right.$ for some subsequence $\left(x_{n_{k}}\right)_{k=1}^{\infty}$ of $\left.\left(x_{n}\right)_{n \in \mathbf{N}}\right\}$.
(M) for all $s \in S$ then $x \leq s$ and if γ is a lower bound of S then $\gamma \leq x$.

Math 310 Sample Final Exam Version A
25. Give a precise definition of what it means for a function f to be differentiable at c and the value $f^{\prime}(c)$ of the derivative.
26. Finish the following statement of Taylor's theorem exactly:

Theorem 5.6. Suppose that $f:[a, b] \rightarrow \mathbf{R}, n$ is a positive integer, $f^{(n)}$ is continuous on $[a, b]$, and $f^{(n)}$ is differentiable on (a, b). For $x \neq x_{0}$ in $[a, b]$, there is ...
27. Find a bounded sequence x_{n} and a convergent sequence y_{n} such that $x_{n} y_{n}$ does not converge.

Math 310 Sample Final Exam Version A
28. Prove one of the following:

Proposition 3.2: A convergent sequence is bounded.
Theorem 3.7: A bounded monotone sequence converges.

Math 310 Sample Final Exam Version A
29. Prove one of the following:

Theorem 4.2: If $f:[a, b] \rightarrow \mathbf{R}$ is continuous on $[a, b]$ then f has an absolute maximum and an absolute minimum on $[a, b]$.
Theorem 4.4: A continuous function on a closed interval is uniformly continuous there.

Math 310 Sample Final Exam Version A
30. Let $A=\left\{x \in \mathbf{R}: x^{2}<2\right\}$.
(i) Find $\sup A$.
(ii) Find $\inf A$.
31. Fill in the missing parts of the Bolzano-Weierstrass theorem for sequences exactly: Theorem 3.10. A... sequence in \mathbf{R} has a ... subsequence.
32. Give an example of an unbounded sequence with a convergent subsequence.

Math 310 Sample Final Exam Version A
33. Give an example of $f: \mathbf{R} \rightarrow \mathbf{R}$ such that f is continuous but not uniformly continous.
34. Give an example of a continuous function $g: \mathbf{R} \rightarrow \mathbf{R}$ such that $g((-1,1))$ is not an open interval.
35. Let $f: X \rightarrow Y$ and $A \subseteq X$. Give an example showing that $f^{-1}(f(A))=A$ need not hold if f is not one-to-one.

Math 310 Sample Final Exam Version A
36. For reference recall the following results:

Theorem 6.2: A bounded function f is in $\mathcal{R}[a, b]$ if and only if for every $\varepsilon>0$ there is a partition P of $[a, b]$ such that $U(P, f)-L(P, f)<\varepsilon$.
Proposition 6.3: Let f and g be in $\mathcal{R}[a, b]$ and let c be in \mathbf{R}. Then $f \pm g$ and $c f$ are in $\mathcal{R}[a, b]$ and

$$
\int_{a}^{b}(f \pm g)=\int_{a}^{b} f \pm \int_{a}^{b} g \quad \text { and } \quad \int_{a}^{b} c f=c \int_{a}^{b} f
$$

Also recall the theorems stated in Question 29. Now prove one of the following:
Theorem 6.7: If f is continuous on $[a, b]$, then f is in $\mathcal{R}[a, b]$.
Theorem 6.9: If f is monotone on $[a, b]$, then f is in $\mathcal{R}[a, b]$.

Math 310 Sample Final Exam Version A
37. [EXTRA CREDIT] Prove the chain rule: Let I and J be intervals or rays in R, let $f: I \rightarrow J$ and $g: J \rightarrow \mathbf{R}$, and let c be in I with f differentiable at c and g differentiable at $f(c)$. Then the composite function $g \circ f$ is differentiable at c and $(g \circ f)^{\prime}(c)=g^{\prime}(f(c)) f^{\prime}(c)$.

