- **1.** Let $f: I \to \mathbf{R}$ with $c \in I$. Then f has a local minimum at c if and only if _____.
- **2.** A sequence $(x_n)_{n \in \mathbb{N}}$ in **R** is monotone increasing if and only if _____.
- **3.** A function $f: X \to Y$ is a bijection if and only if _____.
- **4.** Let $f: I \to \mathbf{R}$ with $c \in I$. Then f has a local maximum at c if and only if ______.
- **5.** A set A is countable if and only if _____.
- **6.** A sequence $(x_n)_{n \in \mathbf{N}}$ in **R** is monotone decreasing if and only if _____.
- 7. Let A be a subset of \mathbf{R} . Then A is dense in \mathbf{R} if and only if _____.
- 8. A function $f: D \to \mathbf{R}$ is continuous at c if and only if _____.
- **9.** A function $f: D \to \mathbf{R}$ is uniformly continuous on D if and only if _____.
- **10.** The limit of f at c is L or $\lim_{x\to c} f(x) = L$ if and only if _____.
- 11. A sequence $(x_n)_{n \in \mathbb{N}}$ in **R** is Cauchy if and only if _____.
- **12.** *f* has a discontinuity of the first kind at *c* if and only if _____.

Answers:

- (A) $x_n \leq x_{n+1}$ for all n in **N**.
- (B) there is a neighborhood U of c such that $f(x) \leq f(c)$ for all $x \in U \cap I$.
- (C) both f(c+) and f(c-) exist in **R** and $f(c+) \neq f(c-)$.
- (D) $\forall \epsilon > 0 \ \exists n_0 \in \mathbf{N}$ such that if $n \ge n_0$ and $m \ge n_0$ then $|x_n x_m| < \epsilon$.
- (E) for every x and y in **R** with x < y one has $A \cap (x, y) \neq \emptyset$.
- (F) $x_n \ge x_{n+1}$ for all n in **N**.
- (G) for all $\epsilon > 0$ there is a $\delta > 0$ such that if x and y are in D with $|x y| < \delta$ then $|f(x) - f(y)| < \epsilon$.
- (H) there is a neighborhood U of c such that $f(x) \ge f(c)$ for all $x \in U \cap I$.
- (I) f is one-to-one and onto Y.
- (J) for all $\epsilon > 0$ there is a $\delta > 0$ such that if x is in D and $0 < |x c| < \delta$ then $|f(x) L| < \epsilon$.
- (K) A is finite or A is countably infinite.
- (M) for every neighborhood V of f(c) there is a neighborhood U of c such that if x is in $U \cap D$ then f(x) is in V.

- 13. $x = \sup S$ if and only if _____.
- 14. $\limsup_{x \to \infty} x_n$ is defined as _____.
- 15. $\lim_{n \to \infty} x_n = -\infty$ if and only if _____.
- 16. $\lim_{n \to \infty} x_n = x$ for $x \in \mathbf{R}$ if and only if _____.
- 17. $\liminf_{x \to \infty} x_n$ is defined as _____.
- **18.** Let $A \subseteq \mathbf{R}$ and $x \in \mathbf{R}$. Then x is an accumulation point of A if _____.
- 19. $\lim_{n \to \infty} x_n = \infty$ if and only if _____.
- **20.** $x = \inf S$ if and only if _____.
- **21.** Let $f: X \to Y$ and $A \subseteq X$. The direct image f(A) is defined as _____.
- **22.** Let $f: X \to Y$ and $A \subseteq Y$. The inverse image $f^{-1}(A)$ is defined as _____.
- **23.** Let \mathcal{U} be a collection of sets. Then $\bigcup \mathcal{U}$ is defined as _____.
- **24.** Let \mathcal{U} be a collection of sets. Then $\bigcap \mathcal{U}$ is defined as _____.

Answers:

- (A) for all $\beta < 0$ there exists $n_0 \in \mathbf{N}$ such that if $n \ge n_0$ then $x_n < \beta$.
- (B) $\{x : x \in A \text{ for all } A \in \mathcal{U}\}.$
- (C) $\inf\{x \in \mathbf{R}^{\#} : x_{n_k} \to x \text{ for some subsequence } (x_{n_k})_{k=1}^{\infty} \text{ of } (x_n)_{n \in \mathbf{N}} \}.$
- (D) for all $\epsilon > 0$ there exists $n_0 \in \mathbf{N}$ such that if $n \ge n_0$ then $|x_n x| < \epsilon$.
- (E) $\{x \in X : f(x) \in A\}.$
- (F) $\{x : x \in A \text{ for at least one } A \in \mathcal{U}\}.$
- (G) for all $s \in S$ then $x \ge s$ and if γ is a upper bound of S then $\gamma \ge x$.
- (H) if every neighborhood of x contains a point of A different from x.
- (I) for all $\alpha > 0$ there exists $n_0 \in \mathbf{N}$ such that if $n \ge n_0$ then $x_n > \alpha$.
- $(\mathbf{J}) \quad \{ f(a) : a \in A \}.$
- (K) $\sup\{x \in \mathbf{R}^{\#} : x_{n_k} \to x \text{ for some subsequence } (x_{n_k})_{k=1}^{\infty} \text{ of } (x_n)_{n \in \mathbf{N}} \}.$
- (M) for all $s \in S$ then $x \leq s$ and if γ is a lower bound of S then $\gamma \leq x$.

25. Give a precise definition of what it means for a function f to be differentiable at c and the value f'(c) of the derivative.

26. Finish the following statement of Taylor's theorem exactly:

Theorem 5.6. Suppose that $f:[a,b] \to \mathbf{R}$, *n* is a positive integer, $f^{(n)}$ is continuous on [a,b], and $f^{(n)}$ is differentiable on (a,b). For $x \neq x_0$ in [a,b], there is ...

27. Find a bounded sequence x_n and a convergent sequence y_n such that $x_n y_n$ does not converge.

28. Prove one of the following:

Proposition 3.2: A convergent sequence is bounded.Theorem 3.7: A bounded monotone sequence converges.

29. Prove one of the following:

Theorem 4.2: If $f:[a,b] \to \mathbf{R}$ is continuous on [a,b] then f has an absolute maximum and an absolute minimum on [a,b].

Theorem 4.4: A continuous function on a closed interval is uniformly continuous there.

Math 310 Sample Final Exam Version A

30. Let $A = \{x \in \mathbf{R} : x^2 < 2\}.$ (i) Find sup A.

(ii) Find $\inf A$.

31. Fill in the missing parts of the Bolzano–Weierstrass theorem for sequences exactly:Theorem 3.10. A ... sequence in R has a ... subsequence.

32. Give an example of an unbounded sequence with a convergent subsequence.

33. Give an example of $f: \mathbf{R} \to \mathbf{R}$ such that f is continuous but not uniformly continous.

34. Give an example of a continuous function $g: \mathbf{R} \to \mathbf{R}$ such that g((-1, 1)) is not an open interval.

35. Let $f: X \to Y$ and $A \subseteq X$. Give an example showing that $f^{-1}(f(A)) = A$ need not hold if f is not one-to-one.

36. For reference recall the following results:

Theorem 6.2: A bounded function f is in $\mathcal{R}[a, b]$ if and only if for every $\varepsilon > 0$ there is a partition P of [a, b] such that $U(P, f) - L(P, f) < \varepsilon$. **Proposition 6.3:** Let f and g be in $\mathcal{R}[a, b]$ and let c be in \mathbf{R} . Then $f \pm g$ and cf are in $\mathcal{R}[a, b]$ and

$$\int_{a}^{b} (f \pm g) = \int_{a}^{b} f \pm \int_{a}^{b} g \quad \text{and} \quad \int_{a}^{b} cf = c \int_{a}^{b} f.$$

Also recall the theorems stated in Question 29. Now prove one of the following:

Theorem 6.7: If f is continuous on [a, b], then f is in $\mathcal{R}[a, b]$.

Theorem 6.9: If f is monotone on [a, b], then f is in $\mathcal{R}[a, b]$.

37. [EXTRA CREDIT] Prove the chain rule: Let I and J be intervals or rays in \mathbf{R} , let $f: I \to J$ and $g: J \to \mathbf{R}$, and let c be in I with f differentiable at c and g differentiable at f(c). Then the composite function $g \circ f$ is differentiable at c and $(g \circ f)'(c) = g'(f(c))f'(c)$.