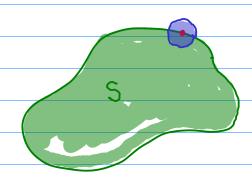
$$B(r, \mathbf{a}) = \{ \mathbf{x} \in \mathbb{R}^n : |\mathbf{x} - \mathbf{a}| < r \}.$$

The ball of radius r contered at a.

$$S^{\rm int} = \big\{ \mathbf{x} \in S : B(r,\mathbf{x}) \subset S \text{ for some } r > 0 \big\}.$$

$$\partial S = \big\{ \mathbf{x} \in \mathbb{R}^n : B(r,\mathbf{x}) \cap S \neq \varnothing \text{ and } B(r,\mathbf{x}) \cap S^c \neq \varnothing \text{ for every } r > 0 \big\}.$$



$$\overline{S} = S \cup \partial S$$
.

Closure of S.

1.14 Theorem. Suppose $S \subset \mathbb{R}^n$ and $\mathbf{x} \in \mathbb{R}^n$. Then \mathbf{x} belongs to the closure of S if and only if there is a sequence of points in S that converges to \mathbf{x} .

Proof:

If $x \in S$. Then $x_k = x \in S$ and $x_k - x$

If $x \notin S$ then $x \in \partial S$. Let $r_k = \frac{1}{k}$ and consider the ball $\langle B(r_k, x) \rangle$. By definition of ∂S these balls intersect S, Thus, $B(r_k, x) \cap S \neq \emptyset$

Consequently there is $x_k \in B(r_k, x) \cap S$ for each k. Claim $x_k \in S$ and $x_k \rightarrow x$. (obvious?)

$|x-x_k|<\frac{1}{k}\rightarrow 0$ or $k\rightarrow \infty$.

"

"
Yet $x_k \in S$ with $x_k \to x$ as $k \to \infty$.

Claim $x \in \overline{S}$.

Proof. If $\{x_k\}$ is a sequence in S that converges to x, then every neighborhood of x contains elements of S — namely, x_k where k is sufficiently large — so x is in the closure of S. Conversely suppose x is in the closure of S. If x is in S itself, let

Case $x \in S$. The B(r,x) be a reighborhood of x. Then $x^{1} = x^{1} = x^{1$

Definition: A subset of \mathbb{R}^n is called **compact** if it is both closed and bounded.

- **1.21 Theorem** (The Bolzano-Weierstrass Theorem). If S is a subset of \mathbb{R}^n , the following are equivalent:
 - a. S is compact.
 - b. Every sequence of points in S has a convergent subsequence whose limit lies in S.

"a ⇒ b": Suppose 5 is compact.

Yet $x_k \in S$. Then x_k is bounded since 3 is bounded and by the Bolzano-Weierstrass theorem from last time of has a convergent subsequence $x_k - 7 l$.

Since S is closed than les.

"b=>a": Suppose

Every sequence of points in S has a convergent subsequence whose limit lies in S.

Want to show that 5 is compact,

For contradiction suppose 5 in 405 compact.

Then it is either not bounded or not closed or not either.

If Sis not bounded. Then there is exces such that $x_k \to \infty$ as $k \to \infty$.

But then all subsequences xx; also xx; -200.

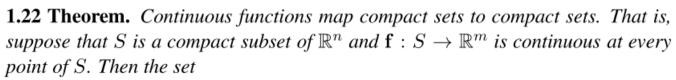
Every sequence of points in S has a convergent subsequence whose limit lies in S.

If S is not closed. Then there is $x \in 5 \setminus 5$. Since $x \in 35$ then for every $r_k = \frac{1}{k}$ then $B(r_k, x) \cap 5 \neq \emptyset$ So there is $x_k \in B(r_k, x) \cap 5$. Clearly $x_k \to x$ Since

 $|x-x_k| < \frac{1}{k} \rightarrow 0$ or $k \rightarrow \infty$.

Every subsequence Xx; converges to oc since the original sequence was convergent contradicting

Every sequence of points in S has a convergent subsequence whose limit lies in S.



$$\mathbf{f}(S) = \big\{ \mathbf{f}(\mathbf{x}) : \mathbf{x} \in S \big\}$$

is also compact.

Suppose 5 is compact. Claim f(5) is compact.

Let yr Ef(S) need to show yr hara cour. Subseq. and the limitis inf(s).

Kit XKES such that yx=f(xx)

Since Sis compact there is a subseq. 20 kg. -> x ES.

hm

by continuity of f

lim
$$y_{k,j} = \lim_{j \to \infty} f(x_{k,j}) = f(\lim_{j \to \infty} x_{k,j}) = f(x) \in f(S)$$

1.23 Corollary (The Extreme Value Theorem). Suppose $S \subset \mathbb{R}^n$ is compact and $f: S \to \mathbb{R}$ is continuous. Then f has an absolute minimum value and an absolute maximum value on S; that is, there exist points $\mathbf{a}, \mathbf{b} \in S$ such that $f(\mathbf{a}) \leq f(\mathbf{x}) \leq g$ $f(\mathbf{b})$ for all $\mathbf{x} \in S$.

Proof. By Theorem 1.22, the set f(S) is a compact subset of \mathbb{R} . Thus, it is bounded, so inf f(S) and sup f(S) exist, and closed, so inf f(S) and sup f(S)actually belong to f(S). But this says precisely that the set of values of f on S has a smallest and a largest element, as desired.

- **1.24 Theorem** (The Heine-Borel Theorem). If S is a subset of \mathbb{R}^n , the following are equivalent:
 - a. S is compact.
- b. If U is any covering of S by open sets, there is a finite subcollection of U that still forms a covering of S. (In brief: Every open covering of S has a finite subcovering.) _please read for

Proof. The proof is given in Appendix B.1 (Theorem B.1).