B(r,a) = {x € R": |[x —a| <r}.

The bl 2y tadins = condered. ot .

S = {x € S: B(r,x) C S for some r > 0}.

S = {x € R": B(r,x) NS # @ and B(r,x) N S° # @ for every r > 0}.

1.14 Theorem. Suppose S C R™ and x € R™. Then x belongs to the closure of S

if and only if there is a sequence of points in S that converges to X.
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Proof. If {x}} is a sequence in S that converges to x, then every neighborhood of
x contains elements of S — namely, x; where k is sufficiently large — so x is in

the cloanre of S Convercelv aiinnnge x 1< in the claoanre of § Tf v i< in S iteelf let
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Br-‘m'\-l\'lm; A subset of R" is called compact if it is both closed and bounded. o

1.21 Theorem (The Bolzano-Weierstrass Theorem). If S is a subset of R", the
following are equivalent:
a. S is compact. .
b. Every sequence of points in S has a convergent subsequence whose limit lies

insS.
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Every sequence of points in S has a convergent subsequence whose limit lies

inS.
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Every vequence of points in S has a convergent subsequence whose limit lies

inS.
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Every sequence of points in S has a convergent subsequence whose limit lies

inasS.




1.22 Theorem. Continuous functions map compact sets to compact sets. That is,
suppose that S is a compact subset of R" and f : S — R™ is continuous at every
point of S. Then the set

f(S) = {f(x):x €S}

is also compact.
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1.23 Corollary (The Extreme Value Theorem). Suppose S C R" is compact and

f S — Ris continuous. Then f has an absolute minimum value and an absolute

maximum value on S; that is, there exist points a,b € S such that f(a) < f(x) <
f(b) forallx € S. —

Proof. By Theorem 1.22, the set f(S) is a compact subset of R. Thus, it is

bounded, so inf f(S) and sup f(.5) exist, and closed, so inf f(S) and sup f(S) —

actually belong to f(.S). But this says precisely that the set of values of f on S has
a smallest and a largest element, as desired. O

1.24 Theorem (The Heine-Borel Theorem). If S is a subset of R", the following —
are equivalent: S

a. S is compact.

b. If U is any covering of S by open sets, there is a finite subcollection of U that

still forms a covering of S. (In brief: Every open covering of S has a finite

subcovering.) (\?\em ! %T
Proof. The proof is given in Appendix B.1 (Theorem B.1). WW [




