1.14 Theorem. Suppose S C R"™ andx € R". Then x belongs to the closure of S
if and only if there is a sequence of points in S that converges to X.
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B.1 The Heine-Borel Theorem

B.1 Theorem. If S is a subset of R", the following are equivalent:
a. S is compact.
b. If U is any covering of S by open sets, there is a finite subcollection of U that
still forms a covering of S.

Proof. If S is not compact, by the Bolzano-Weierstrass theorem there is a sequence
{xr} in S, no subsequence of which converges to any point of S. This means that
for each xS there 1S an open ball Dy centered at X that contains x; for at most
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is as follows: A set S C R" is disconnected if it is the union of two nonempty
subsets S and S5, neither of which intersects the closure of the other one; in this
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1.25 Theorem. The connected subsets of R are precisely the intervals (open, half-
open, or closed; bounded or unbounded). B
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Proof. If S C R is not an interval, there exist a,b € S and ¢ ¢ S such that —
a<c<b LetS =SN(—o00,c)and Sy = SN (c,o0). Then S = S; U Sy (since

c ¢ 5), and Sy and S5 are nonempty since a € Sy and b € S5. The closures of

S1 and S9 are contained in (—oo, ¢] and [¢, 00), so the only point where they can

intersect is ¢, which is not in either S; or Sy. Thus S is disconnected. .
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