1.14 Theorem. Suppose $S \subset \mathbb{R}^n$ and $\mathbf{x} \in \mathbb{R}^n$. Then \mathbf{x} belongs to the closure of S if and only if there is a sequence of points in S that converges to \mathbf{x} .

"F" done

"E" But $x_k \in S$ with $x_k \to x$ as $k \to \infty$ Claim $x \in S$.

Suppose for contraduction that $x \notin S$.

Thus $x \in S^c$.

Since S is closed than S^c is open.

Thus every point in S^c is an interior point $x \in S^c$.

Since $x_k \to x$ there is $x_k \to x$ implies $x_k \in S(r,x)$, $x_k \in S$ implies $x_k \in S(r,x) \cap S \neq x$ B($x_k \to x_k \to x_k$ implies $x_k \in S(r,x)$).

B($x_k \to x_k \to x_k$ implies $x_k \in S(r,x)$ $x_k \in S(r,x)$

B.1 The Heine-Borel Theorem

Therefore x 65.

- **B.1 Theorem.** If S is a subset of \mathbb{R}^n , the following are equivalent:
- a. S is compact.
- b. If U is any covering of S by open sets, there is a finite subcollection of U that still forms a covering of S.

Proof. If S is not compact, by the Bolzano-Weierstrass theorem there is a sequence $\{\mathbf{x}_k\}$ in S, no subsequence of which converges to any point of S. This means that for each $\mathbf{x} \in S$ there is an open ball $D_{\mathbf{x}}$ centered at \mathbf{x} that contains \mathbf{x}_k for at most

please please try to read this proof for mixt time ...

Definition:

is as follows: A set $S \subset \mathbb{R}^n$ is **disconnected** if it is the union of two nonempty subsets S_1 and S_2 , neither of which intersects the closure of the other one; in this

Definition a set SERn is connected if it is not disconnected;

1.25 Theorem. The connected subsets of $\mathbb R$ are precisely the intervals (open, halfopen, or closed; bounded or unbounded).

>"=>" If SER is an Interval them it's connected.

Casier Do the parier one first

contraporative

SER is not an interval then it's not connected disconnected

Need to find 51,52=R with 5, \$1, 5, \$10, 5= 5, US, and 5, 05, =0 and 5, 05, =0,

Proof. If $S \subset \mathbb{R}$ is not an interval, there exist $a, b \in S$ and $c \notin S$ such that a < c < b. Let $S_1 = S \cap (-\infty, c)$ and $S_2 = S \cap (c, \infty)$. Then $S = S_1 \cup S_2$ (since $c \notin S$), and S_1 and S_2 are nonempty since $a \in S_1$ and $b \in S_2$. The closures of S_1 and S_2 are contained in $(-\infty, c]$ and $[c, \infty)$, so the only point where they can intersect is c, which is not in either S_1 or S_2 . Thus S is disconnected.

">" If SER is an operval then it's connected.

Case S=[a,b]. Te, case Sis a closed interval. Claim that S is connected. For contradiction suppose it is disconnected.

There exists 51,52=R with 5, \$, \$, \$, \$0, 5= 5, US2 and 5, (15, = \$) and 5, a 5, = \$,

By relabeling, it recessary, assume 6 852. act C= Sup S1. Then CES, and conrequently 0 & S2. Since 5 is closed and 5,55 thun 5,55=5. So CES = 51052 Sinu C&S2 then CES1, Note also c=b and (c,b]ns, = p Claim C E 52. Since 5= [a,b] = 5,U52. then (c,b] =5\51 = 52. But then (c, b) = 52 [c,6] < 52 50 CG 52 Thus ce Sinsz contradicting that sinsz=0.