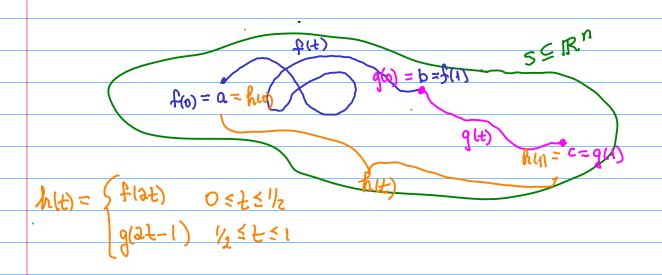
Path connected.

There is another notion of connectedness that is important in many situations. A set $S \subset \mathbb{R}^n$ is called **arcwise connected** (or **pathwise connected**) if any two points in S can be joined by a continuous curve in S, that is, if for any \mathbf{a}, \mathbf{b} in S there is a continuous map $\mathbf{f}:[0,1]\to\mathbb{R}^n$ such that $\mathbf{f}(0)=\mathbf{a}, \mathbf{f}(1)=\mathbf{b}$, and $\mathbf{f}(t)\in S$ for all $t\in[0,1]$.



1.28 Theorem. If $S \subset \mathbb{R}^n$ is arcwise connected, then S is connected.

between every two

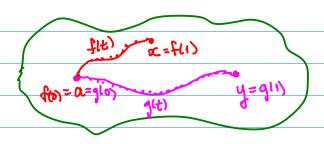
Points TN 5 25 a path.

Proof: For contradiction suppose 5 is disconnected...

Proof. We shall assume that S is disconnected and show that it is not arcwise connected. Accordingly, suppose (S_1, S_2) is a disconnection of S. Pick $\mathbf{a} \in S_1$ and $\mathbf{b} \in S_2$; we claim that there is no continuous $\mathbf{g} : [0,1] \to S$ such that $\mathbf{g}(0) = \mathbf{a}$ and $\mathbf{g}(1) = \mathbf{b}$. If there were, the set $V = \mathbf{g}([0,1])$ would be connected by Theorems 1.25 and 1.26. But this cannot be so: V is the union of $V \cap S_1$ and $V \cap S_2$; these sets are nonempty since $\mathbf{a} \in V \cap S_1$ and $\mathbf{b} \in V \cap S_2$, and neither of them intersects the closure of the other. Hence S is not arcwise connected.

1.30 Theorem. If $S \subset \mathbb{R}^n$ is open and connected, then S is arcwise connected.

Proof: Let as sound $S_1 = \{x : \text{there is a path between a and } x \}$.
Notes, is answise connected $x,y \in S_1$



h: [0,1] continuous...

h(0) = x h(1) = y

h(t) GS, for all t C [0,1]

write out the definition

of h explicitly user cases...

For contradiction,

suppose Swere not orcwise connected. Thun $5, \neq 5$ and in purticular $5_2 = 5 \setminus 5, \neq \emptyset$.

Claim that 51,52 is a disconnection for 5 (contradicting that).

Olheady know $5_1 \pm 10$, $5_2 \pm 10$, $5=5_1 \cup 5_2$. Need to show $\overline{5}_1 \cap 5_2 = 10$ and $5_1 \cap \overline{5}_2 = 10$.

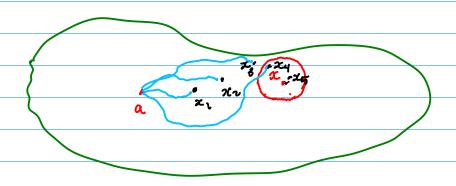
Claim $S_1 \cap S_2 = \emptyset$. The $x \in S_1$. Since $x \in S_1$ and S_1 is open there is a ball of radius r about x contained in S_1 . Thus $B(r,x) \subseteq S_1$.

There is a path from a to se since se 65,

Draw a straight line between ac and y, This a path between ac and any point y & B(r, x).

Thus every $y \in B(r,x)$ is in S_1 or $B(r,x) \subseteq S_1$. Thus S_2 could not contain any points of S_4 since there points are all interior points of S_1 . Thus $S_1 \cap S_2 = \emptyset$.

Claim 5, 152=0. Yet xE5, also in S.



Let $x_j \in S$, with $x_j \rightarrow x$. Since they converge then for some K large enough $x_j \in B(r,x)$ for $j \geq K$.

There is a path from a to x_K since $x_K \in S_1$.

There is a path from x_K to x_K since $x_K \in B(r, x)$ straight line.

Therefore XES,. [terminology S, is a clopen set.)

both closed and open
relative to S.

Then SzzSISI implies x \ Sz. 50 \ \(\overline{5}_1 \alpha \overline{5}_2 = \overline{9}_1.

Again this a contradiction because 5 is cornected.

Section 1.8 Uniform Continuity

the condition for f to be continuous on S is that

$$(1.31) \ \forall \epsilon > 0 \ \forall \mathbf{x} \in S \ \exists \delta > 0: \ \forall \mathbf{y} \in S \ |\mathbf{x} - \mathbf{y}| < \delta \implies |\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{y})| < \epsilon,$$

whereas the condition for f to be uniformly continuous on S is that

$$(1.32) \quad \forall \epsilon > 0 \ \exists \delta > 0: \ \forall \mathbf{x}, \mathbf{y} \in S \quad |\mathbf{x} - \mathbf{y}| < \delta \implies |\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{y})| < \epsilon.$$

1.33 Theorem. Suppose $S \subset \mathbb{R}^n$ and $\mathbf{f}: S \to \mathbb{R}^m$ is continuous at every point of S. If S is compact, then \mathbf{f} is uniformly continuous on S.

recall: Closed intervals [a,b] are examples of compact sets.

for untradiction suppose not, their

Not
$$\left(\ \forall \epsilon > 0 \ \exists \delta > 0 : \ \forall \mathbf{x}, \mathbf{y} \in S \ |\mathbf{x} - \mathbf{y}| < \delta \implies |\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{y})| < \epsilon. \right)$$

JE70 45>0 Jx,yES 1x-y1<8 → 1f(x)-f(y)) = E

Let & be such on & fixed

But Erok then scrights 124-94/5/k

and If(xx)-flyx) > 8

By B.W. Hure is a cour. subseq. 2/2 a

Since Sis closed a &S.

Since /xx; - yx: / x; then yx, ->a also.

Now f(xx;)-f(yx;) -> f(a)-f(a)=0 =ince

f is continuous at a. Contradicting Itani-flyzill E.