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There is another notion of connectedness that is important in many situations.
A set S C R™ is called arcwise connected (or pathwise connected) if any two
points in S can be joined by a continuous curve in S, that is, if for any a,b in S
there is a continuous map f : [0,1] — R™ such that f(0) = a, f(1) = b, and
f(t) € Sforallt € [0,1. & e
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1.28 Theorem. If'S C R" is arcwise connected, then S is connected.
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Proof. We shall assume that S is disconnected and show that it is not arcwise con-

nected. Accordingly, suppose (S7,.52) is a disconnection of S. Pick a € S} and
b € Ss; we claim that there is no continuous g : [0, 1] — S such that g(0) = a and

g(1) = b. If there were, the set V' = g([0, 1]) would be connected by Theorems

1.25 and 1.26. But this cannot be so: V' is the union of V' 1N S; and V' M Ss; these

sets are nonempty since a € V' 1.5y and b € V 1.5y, and neither of them intersects

the closure of the other. Hence S is not arcwise connected. O




1.30 Theorem. If S C R" is open and connected, then S is arcwise connected.
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the condition for f to be continuous on S is that

(1.31) Ve>0Vxe S0 >0: Vye S |x—y|l<d = [f(x)—f(y)| <e,

whereas the condition (ui { to be uniformly continuous on S is that

(1.32) Ve>036>0: Vx,yeS |x—y|<d = |f(x)—f(y)] <e B

1.33 Theorem. Suppose S C R" and f : S — R™ is continuous at every point of
S. If S is compact, then £ is uniformly continuous on S.
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