Directional Derivatives. The partial derivatives 0, f give information about
how f(x) varies as x moves along lines parallel to the coordinate axes. Sometimes
we wish to study the variation of f along oblique lines instead. Thus, given a unit
vector u and a base point a, we consider the line passing through a in the direction
u, which can be represented parametrically by g(¢) = a + tu. The directional
——— derivative of f at a in the direction u is defined to be —

S duf(a) = %f(a—l— tu)|t=0 _ %l_% fla+ t‘;) — f(a)7

provided that the limit exists. For example, if u is the unit vector in the positive
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2.23 Theorem. If f is differentiable at a, then the directional derivatives of f at a
all exist, and they are given by
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2.26 Theorem (Chain Rule I). Suppose that att = (x)
is differentiable at x = b, and Then the composite function go =

f(g(t)) is differentiable at t = a, and its derivative is given by

¢(a) = V(b)-g/(a). .
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2.26 Theorem (Chain Rule I). Suppose that g(t) is differentiable att = a, f(x)
is differentiable at x = b, and b = g(a). Then the composite function p(t) =
f(g(t)) is differentiable at t = a, and its derivative is given by o

#(a) = V(b) - g(a) _
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— 2.29 Theorem (Chain Rule II). Suppose that g.,...,g, are functions of t =

—— (t1,...,t;m) and [ is a function of x = (x1,...,x,). Letb =g(a)and p = fog. —
If g1, ..., qn are differentiable at a (resp. of class C' near a) and f is differentiable

at b (resp. of class C* near b), then o is differentiable at a (resp. of class C' near
a), and its partial derivatives are given by —

dp  Of 0xy of Oxy -
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where the derivatives Of /Ox; are evaluated at b and the derivatives Op /0ty and —
Oxj/0ty, = 0g; /0ty are evaluated at a. S
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