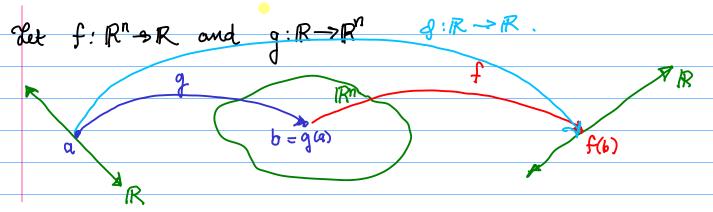
Directional Derivatives. The partial derivatives $\partial_j f$ give information about how $f(\mathbf{x})$ varies as \mathbf{x} moves along lines parallel to the coordinate axes. Sometimes we wish to study the variation of f along oblique lines instead. Thus, given a unit vector \mathbf{u} and a base point \mathbf{a} , we consider the line passing through \mathbf{a} in the direction \mathbf{u} , which can be represented parametrically by $\mathbf{g}(t) = \mathbf{a} + t\mathbf{u}$. The **directional derivative** of f at \mathbf{a} in the direction \mathbf{u} is defined to be

$$\dot{\partial_{\mathbf{u}}} f(\mathbf{a}) = \frac{d}{dt} f(\mathbf{a} + t\mathbf{u})\big|_{t=0} = \lim_{t \to 0} \frac{f(\mathbf{a} + t\mathbf{u}) - f(\mathbf{a})}{t},$$

provided that the limit exists. For example, if \mathbf{u} is the unit vector in the positive

Therem
$$\delta_u f(a) = \nabla f(a) \cdot u$$

2.23 Theorem. If f is differentiable at a, then the directional derivatives of f at a all exist, and they are given by



2.26 Theorem (Chain Rule I). Suppose that $\mathbf{g}(t)$ is differentiable at t = a, $f(\mathbf{x})$ is differentiable at $\mathbf{x} = \mathbf{b}$, and $\mathbf{b} = \mathbf{g}(a)$. Then the composite function $\varphi(t) = f(\mathbf{g}(t))$ is differentiable at t = a, and its derivative is given by

Chain rule in 310., I dean,

lim fog(xth)-fog(x) = lim fog(xth)-fog(x) lim g(xth)-g(x)

h >0 Proof (x) = h >0 Proof (x) Proof (x) Proof (x)

$$f(x+h) - g(x)$$

difficulty is that this denominator might be zero

2.26 Theorem (Chain Rule I). Suppose that $\mathbf{g}(t)$ is differentiable at t = a, $f(\mathbf{x})$ is differentiable at $\mathbf{x} = \mathbf{b}$, and $\mathbf{b} = \mathbf{g}(a)$. Then the composite function $\varphi(t) = f(\mathbf{g}(t))$ is differentiable at t = a, and its derivative is given by

$$\varphi'(a) = \nabla f(\mathbf{b}) \cdot \mathbf{g}'(a),$$

The point is £(10) actually makes zenee?

Proof; f differentiable at 6 means (and 9 diff. at a means)

f(b+h) = f(b) + \(\nabla f(b) \cdot h + \(\xi_1(h)\) where \(\frac{\xi_1(h)}{|h|} \rightarrow \text{as d \rightarrow 0}

 $g(a+u)=g(a)+g'(a)u+\overline{E}_2(u)$ where $|E_2(u)| \rightarrow 0$ as u-z = 0.

wint to show g(t)=fog(t) is differentiable a.

 $g(a+u) = g(a) + g'(a)u + E_3(u)$ where $\frac{E_3(u)}{u} = 0$ as u = 20.

Need to show this

 $\varphi(a+u) = f(g(a+u)) = f(b+h) = f(b) + \nabla f(b) \cdot h + F_1(h)$

note g(0+u) = 6+h = g(a) +h so h = g(a+u)-g(a)

=f(b)+\(\forall f(b). \(g(a+u)-g(a) \) +\(\forall f(b). \)

 $=f(b)+\nabla f(b)\cdot \left(g'(\alpha)u+E_1(u)\right)+F_1(b)$

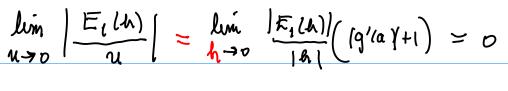
= f(b) + \(\nabla f(b) \cdot g'(a) u + \nabla f(b) \cdot \(\omega \) \(\omega \) \(\omega \)

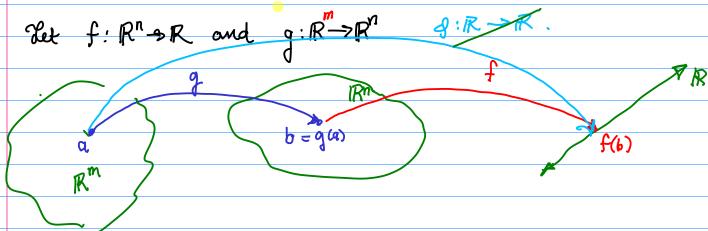
Claim setting $g'(a) = \nabla f(b) \cdot g'(a)$ and $E_g(u) = \nabla f(b) \cdot E_2(u) + F_1(h)$ leads to being able to show $E_3(u) \rightarrow 0$ as $u \rightarrow 0$.

 $\left|\frac{\nabla f(b) \cdot E_2(u)}{u}\right| \leq \frac{\left|\nabla f(b)\right| \cdot \left|E_2(u)\right|}{\left|u\right|} = \left|\nabla f(b)\right| \left|\frac{E_2(u)}{u}\right| = 0 \text{ as }$ $= \left|\nabla f(b)\right| \cdot \left|\frac{E_2(u)}{u}\right| = 0 \text{ as }$ $= \left|\nabla f(b)\right| \cdot \left|\frac{E_2(u)}{u}\right| = 0 \text{ as }$ $= \left|\nabla f(b)\right| \cdot \left|\frac{E_2(u)}{u}\right| = 0 \text{ as }$ $= \left|\nabla f(b)\right| \cdot \left|\frac{E_2(u)}{u}\right| = 0 \text{ as }$ $= \left|\nabla f(b)\right| \cdot \left|\frac{E_2(u)}{u}\right| = 0 \text{ as }$

recall h=g(a+u)-g(a) Now consider $\left|\frac{E_{l}(h)}{u}\right| = \left|\frac{E_{l}(g(a+u)-g(a))}{2i}\right|$ $\frac{E_1 \left(g(a+u) - g(a) \right) \left(g(a+u) - g(a) \right)}{g(a+u) - g(a)}$ From 310 might be zero ... From text... $|\mathbf{h}| = |u\mathbf{g}'(a) + \mathbf{E}_2(u)| \le (|\mathbf{g}'(a)| + 1)|u|.$ instead of solving for h, let's bound it ... Thus, | h=|g(a+u)-g(a)|=|g'(a)u + Ez(v)| ≤ |g(a)||u| + (Ez(v)) By hypothesis [E2(u)] ->0 as u-z o. $VE70 3870 s.t |u| < \delta$ implies $|E_2(u)| < \epsilon$ Onose E=1 $\frac{78}{0}$ s.t |u|<8 implies $|E_2(u)|<1$. $\left(\frac{E_2(u)}{u}\right) < 1$ means $\left(E_2(u)\right) < 1u\right)$ It follows [h [= (g'(a) | | ul + | u| = (|g'(a)| + 1) | u| this inequality means h->0 as u->0 Now... provided hto then... Gody unix Hus imp. $\left|\frac{E_{\ell}(h)}{u}\right| = \frac{|E_{\ell}(h)|}{|A|} \frac{|A|}{|a|} \leq \frac{|E_{\ell}(h)|}{|A|} \left(|g'(\alpha \gamma + 1)|\right)$

here we are ignoring the exact dep. of h on u.





2.29 Theorem (Chain Rule II). Suppose that g_1, \ldots, g_n are functions of $\mathbf{t} = (t_1, \ldots, t_m)$ and f is a function of $\mathbf{x} = (x_1, \ldots, x_n)$. Let $\mathbf{b} = \mathbf{g}(\mathbf{a})$ and $\varphi = f \circ \mathbf{g}$. If g_1, \ldots, g_n are differentiable at \mathbf{a} (resp. of class C^1 near \mathbf{a}) and f is differentiable

at **b** (resp. of class C^1 near **b**), then φ is differentiable at **a** (resp. of class C^1 near **a**), and its partial derivatives are given by

(2.30)
$$\frac{\partial \varphi}{\partial t_k} = \frac{\partial f}{\partial x_1} \frac{\partial x_1}{\partial t_k} + \dots + \frac{\partial f}{\partial x_n} \frac{\partial x_n}{\partial t_k},$$

where the derivatives $\partial f/\partial x_j$ are evaluated at **b** and the derivatives $\partial \varphi/\partial t_k$ and $\partial x_j/\partial t_k = \partial g_j/\partial t_k$ are evaluated at **a**.

Proof is the same ...