Here is another useful corollary of the chain rule. A function f on R" is called
(positively) homogeneous of degree a (a € R)if f(tx) = t*f(x) forall¢ > 0and
x # 0. -
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2.36 Theorem (Euler’s Theorem). If f is homogeneous of degree a, then at any
point X where f is differentiable we have
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We conclude this section with an additional geometric insight into the meaning
of the gradient of a function. If F is a differentiable function of (z,y,2) € R?, the ~—
locus of the equation F'(z,y, z) = 0 is typically a smooth two-dimensional surface ——
S in R3. (We shall consider this matter more systematically in Chapter 3.) Suppose
that (z,y, z) = g(t) is a parametric represention of a smooth curve on S. On the
one hand, by the chain rule we have (d/dt)F(g(t)) = VF(g(t)) - g'(t). On the
other hand, since the curve lies on S, we have F(g(t)) = O for all ¢ and hence
(d/dt)F(g(t)) = 0. Thus, for any curve on the S, the gradient of F is orthogonal —
to the tangent vector to the curve at each point on the curve. Since such curves can
go in any direction on the surface, we conclude that at any point a € S, VF(a) is
orthogonal to every vector that is tangent to .S at a. (Of course, this is interesting
only if VF(a) # 0.) We summarize:
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2.4 The Mean Value Theorem

2.39 Theorem (Mean Value Theorem IIl). Ler S be a region in R" that contains
the points a and b as well as the line segment L that joins them. Suppose that f is
a function defined on S that is continuous at each point of L and differentiable at

each point of L except perhaps the endpoints a and b. Then there is a point ¢ on L
——— such that -

_— f(b) = f(a) = Vf(c) - (b~ a). -
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f(b) = f(a) =V f(c)- (b—a).
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on. Aset S C IR" is called convex if whenever a,b € S, the line segment from

a to b also lies in S. Clearly every convex set is arcwise connected (line segments
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FIGURE 2.4: A convex set (57), a set that is connected but not convex
(.52), and a disconnected set (S3).
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2.40 Corollary. Suppose that [ is differentiable on an open convex set S and

\Vf(x)| < M foreveryx € S. Then |f(b) — f(a)| < M|b —a|foralla,b € S.
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2.41 Corollary. Suppose f is differentiable on an open convex set S and V f(x) =
———— Oforallx € S. Then f is constant on S. - T —
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242 Theorem. Suppose that f is differentiable on an open connected set S and
W
Vf(x)=0forallx € S. Then f is constant on S.
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