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3.1 Theorem (The Implicit Function Theorem for a Single Equation). Let
F(x,vy) be a function of class C'* on some neighborhood of a point (a,b) € R"*1,
Suppose that F(a,b) = 0 and 0,F(a.b) # 0. Then there exist positive numbers
ro, 1 such that the following coiiclusions are valid.

:@6 a.‘/For each X in the ball |x — a| < rq there is a unique y such that |y — b| < rq
and F(x,y) = 0. We denote this y by f(x), in particular, f(a) = b.
b. The function [_thus defined for x —a| < rgisof cla;s;s__g L and its partial ~—
{ derivatives are given by

(3.2) 0, f(x) = - LS @
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3.3 Corollary. Let F be a function of class C' on R", and let S = {x : F(x) = 0}.
For every a € S such that VF(a) # 0 there is a neighborhood N of a such that
SN N is the graph of a C' function.

Proof. Since VF(a) # 0, we haveiajF (a) # Olfor some j. The equation F' = ()
can then be solved to yield z; as a C"* function of the remaining variables near the

point a. O -
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function f(x) LY sunasurr,
r=x-exp(1l-x) Lr 4= Vax-e
if r>=0
return r~(1/3)
else or ~ = = - - - :
return -(-r)~(1/3) placs /7 alm;mhae
end Whane, »a 0 'QNW‘

end -1

Xs=-2:0.01:2
.01:2.0

plot(xs,f.(xs))
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3.2 Curves in the Plane

ot C i. as the graph of a function, y = f(x) or x = f(y), where f is of class C;

esy
i1. las the locus' of an equation F'(x,y) = 0, where F is of class C'!;
-g prowe tlig .. . VEFO sn %x;ﬁ){'-?(i,\p:og T
ii eqpgrametrically, as the range of a C* function|f}: (a,b) — R?.
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This suggests that it might be a good idea to impose the extra conditions that
VF # 0 on the set where F' = 0 in (ii) and that f'(¢) # 0 in (iii). And indeed, with T
the help of the implicit function theorem, it is easy to see that under these extra B
conditions the representations (i)—(iii) are all locally equivalent. That is, if a curve
is represented in one of the forms (i1)—(ii1) and a is a point on the curve, at least a
small piece of the curve including the point a can also be represented in the other —

two forms. o
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3.11 Theorem. —
a. Let F be a real-valued function of class C'' on an open set in R?, and let S =
{(z,y) : F(z,y) = 0}. Ifa € Sand VF(a) # 0, there is a neighborhood N
of a in R? such that S N\ N is the graph of a C' function f (either y = f(x) or

= f(y)).
b. Let f : (a,b) — R? be a function of class C*. If f'(ty) # 0O, there is an open —
interval I containing to such that the set {f(t) : t € I} is the graph of a C'

function f (either y = f(x) or x = f(y)). -




