3.1 Theorem (The Implicit Function Theorem for a Single Equation). Let $F(\mathbf{x}, y)$ be a function of class C^1 on some neighborhood of a point $(\mathbf{a}, b) \in \mathbb{R}^{n+1}$. Suppose that $F(\mathbf{a}, b) = 0$ and $\partial_y F(\mathbf{a}, b) \neq 0$. Then there exist positive numbers r_0, r_1 such that the following conclusions are valid.

For each \mathbf{x} in the ball $|\mathbf{x} - \mathbf{a}| < r_0$ there is a unique y such that $|y - b| < r_1$ and $F(\mathbf{x}, y) = 0$. We denote this y by $f(\mathbf{x})$; in particular, $f(\mathbf{a}) = b$.

[5]

[6]

[7]

[8]

[8]

[9]

[9]

[9]

[9]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

[10]

(3.2)
$$\partial_j f(\mathbf{x}) = -\frac{\partial_j F(\mathbf{x}, f(\mathbf{x}))}{\partial_y F(\mathbf{x}, f(\mathbf{x}))}.$$

Already done part(a). So we have a function f such that F(x, f(x)) = 0 on some neighborhood of a.

(b) Need to find dif(x)...

$$\partial_j f(x) = \lim_{h \to 0} f(x + hej) - f(x)$$

her

I know F(x, f(x)) = 0 and $F(x+he_j, f(x+he_j))$ supposing x and $x+he_j$ are in the neighborhood of a mentioned above.

$$F(x+he_j, f(x+he_j)) = F(x+he_j, f(x+he_j) - f(x) + f(x))$$

$$= F(x+he_j, y+k)$$

where y=f(x) and K=f(x+he)-f(x)

Since $F \in C'$ then $\partial_i F$ and $\partial_y F$ are continuous...

Note also $K = f(x + he_i) - f(x) \to 0$ as $h \to 0$ since we already showed that f is easily.

$$\partial_{j}f(x) = \lim_{h\to 0} \frac{-h\partial_{j}F(x+the_{j},y+tk)}{h\partial_{y}F(x+the_{j},y+tk)} = \frac{\partial_{j}F(x,f(x))}{\partial_{y}F(x+the_{j},y+tk)}$$

Finally to conclude f is of class (1 note that F was of class (1 and dy f(x, f(x)) to so this

quotient $\frac{-\partial_j F(x,f(x))}{\partial_y F(x,f(x))}$ is continuous.

Thus, differ is continuous and so ff Cl.

3.3 Corollary. Let F be a function of class C^1 on \mathbb{R}^n , and let $S = \{\mathbf{x} : F(\mathbf{x}) = 0\}$. For every $\mathbf{a} \in S$ such that $\nabla F(\mathbf{a}) \neq \mathbf{0}$ there is a neighborhood N of \mathbf{a} such that $S \cap N$ is the graph of a C^1 function.

Proof. Since $\nabla F(\mathbf{a}) \neq \mathbf{0}$, we have $\partial_j F(\mathbf{a}) \neq 0$ for some j. The equation F = 0 can then be solved to yield x_j as a C^1 function of the remaining variables near the point \mathbf{a} .

This is the implicit function theorem with the jth variable rather than the last one...

Example
$$G(x,y) = x - e^{1-x} - y^3$$

Couridur the set $S = \{(x,y): G(x,y) = 0\}$

$$\partial y G(x,y) = -3y^2$$

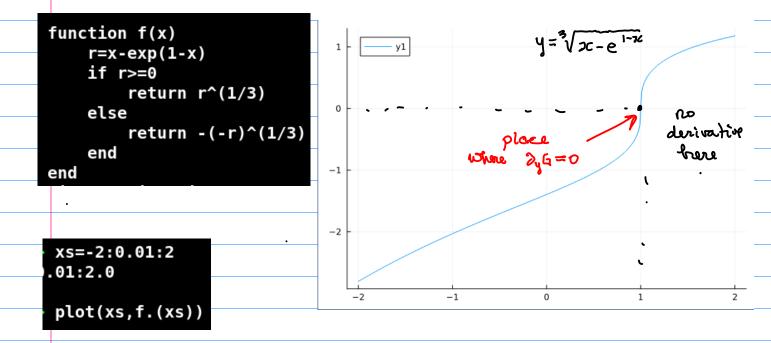
if y=0 then dy((2,4)=0

Suppose G(x,y)=0 and $\Im_y(G(x,y)\neq 0)$ then we know by the theorem that y can be written as a function of x.

$$G(x,y) = x - e^{1-x} - y^3 = 0$$

 $y^3 = x - e^{1-x}$

In fact
$$y = \sqrt[3]{x-e^{1-x}}$$
 obviously true...



Suppose G(x,y)=0 and $J_x(x,y)\neq 0$. Then the Corollary implies on some neighborhood the first coord x con be expressed as a function of y

$$G(x,y) = x - e^{1-x} - y^3 = 0$$

Solve & in terms of y...

so there is a function x=fly) such that

3.2 **Curves in the Plane**

i. as the graph of a function, y = f(x) or x = f(y), where f is of class C^1 ;

as the locus of an equation F(x,y)=0, where F is of class C^1 ; $\nabla F \neq 0$ on $\{(x,y): F(x,y)=0\}$ iii. exparametrically, as the range of a C^1 function $\mathbf{f}: (a,b) \to \mathbb{R}^2$.

 $f(t) \neq 0$ for $t \in (a,b)$

Add to condions:

This suggests that it might be a good idea to impose the extra conditions that $\nabla F \neq \mathbf{0}$ on the set where F = 0 in (ii) and that $\mathbf{f}'(t) \neq \mathbf{0}$ in (iii). And indeed, with the help of the implicit function theorem, it is easy to see that under these extra conditions the representations (i)–(iii) are all *locally* equivalent. That is, if a curve is represented in one of the forms (i)–(iii) and a is a point on the curve, at least a small piece of the curve including the point a can also be represented in the other two forms.

Suppore y=f(2) and fec' then f(x,y) = y - f(a) so f(x,y) = 0 implies y - f(a) = 0Then it can be described using (x) so y = f(a)then it can be described using (x). Suppose y=fixt and fec' the

$$f(t) = (x, f(x))$$

then any point in the range of f(t) satisfies (i). we go from (i) to (iii) way of describing a curve.

For next time Theorem 3.11

3.11 Theorem.

- a. Let F be a real-valued function of class C^1 on an open set in \mathbb{R}^2 , and let $S = \{(x,y) : F(x,y) = 0\}$. If $\mathbf{a} \in S$ and $\nabla F(\mathbf{a}) \neq \mathbf{0}$, there is a neighborhood N of \mathbf{a} in \mathbb{R}^2 such that $S \cap N$ is the graph of a C^1 function f (either y = f(x) or x = f(y)).
- b. Let $\mathbf{f}:(a,b)\to\mathbb{R}^2$ be a function of class C^1 . If $\mathbf{f}'(t_0)\neq\mathbf{0}$, there is an open interval I containing t_0 such that the set $\{\mathbf{f}(t):t\in I\}$ is the graph of a C^1 function f (either y=f(x) or x=f(y)).