

it can be represented as a graph...

Surfaces in \mathbb{R}^3 . The standard ways of representing surfaces in 3-space are analogous to the standard ways of representing curves in the plane:

i, as the graph of a function, z = f(x,y) (or y = f(x,z) or x = f(y,z)), where f is of class C^1 ; f: R2 > R

ii. as the locus of an equation F(x,y,z)=0, where F is of class C^1 ; Curve $S=\{(x,y,z):F(x,y,z)=0\}$ need $\nabla F(x,y,z)\neq 0$ for $(x,y,z)\in S$.

iii. parametrically, as the range of a C^1 function $\mathbf{f}: \mathbb{R}^2 o \mathbb{R}^3$.

Bet UER2 with U open the surface is the range flu)

for (iii) to be seen as a graph need

the vectors $\frac{\partial \mathbf{f}}{\partial u}(u,v)$ and $\frac{\partial \mathbf{f}}{\partial v}(u,v)$ are linearly independent at each $(u, v) \in U$.

3.15 Theorem.

a. Let F be a real-valued function of class C^1 on an open set in \mathbb{R}^3 , and let $S = \{(x,y,z) : F(x,y,z) = 0\}$. If $\mathbf{a} \in S$ and $\nabla F(\mathbf{a}) \neq \mathbf{0}$, there is a neighborhood N of a in \mathbb{R}^3 such that $S \cap N$ is the graph of a C^1 function f (either z = f(x, y), y = f(x, z), or x = f(y, z)).

 $\mathbf{f}:(a,b)\to\mathbb{R}^2.$

b. Let \mathbf{f} be a C^1 mapping from an open set in \mathbb{R}^2 into \mathbb{R}^3 . If $[\partial_u \mathbf{f} \times \partial_v \mathbf{f}](u_0, v_0) \neq$ **0**, there is a neighborhood N of (u_0, v_0) in \mathbb{R}^2 such that the set $\{\mathbf{f}(u, v) :$ $(u,v) \in N$ } is the graph of a C^1 function.

the vectors $\frac{\partial \mathbf{f}}{\partial u}(u,v)$ and $\frac{\partial \mathbf{f}}{\partial v}(u,v)$ are linearly independent at each $(u,v)\in U$.

can write this independence conduitions an

$$\frac{\partial f_1}{\partial u} = \begin{bmatrix} \partial f_1 \\ \partial v \\ \\ \partial v \\ \\ \partial u \end{bmatrix} = \begin{bmatrix} \partial f_2 \\ \partial v \\ \\ \\ \partial v \\$$

These vectors are independent if:

Olso

Sti Sti Sti is the derivative of f.

Df = 2 fz 2 fz rank Df = 2 the

output of the strength of the stren

Proof. Part (a) is a special case of Corollary 3.3. As for (b), let $\mathbf{f} = (\varphi, \psi, \chi)$. The components of the cross product $\partial_u \mathbf{f} \times \partial_v \mathbf{f}$ are just the Jacobians $\partial(\varphi, \psi)/\partial(u, v)$, $\partial(\varphi, \chi)/\partial(u, v)$, and $\partial(\psi, \chi)/\partial(u, v)$. Under the hypothesis of (b), at least one of them — let us say $\partial(\varphi, \psi)/\partial(u, v)$ — is nonzero at (u_0, v_0) . The implicit function theorem then guarantees that the pair of equations $x = \varphi(u, v)$, $y = \psi(u, v)$ can be solved to yield u and v as C^1 functions of x and y near $u = u_0$, $v = v_0$, $v = \varphi(u_0, v_0)$, $v = \psi(u_0, v_0)$. Substituting these functions for u and v in the equation v = v then yields v = v as a v function of v and v whose graph is the range of v.

i. as a graph, y = f(x) and z = g(x) (or similar expressions with the coordinates permuted), where f and g are C^1 functions;

ii. as the locus of two equations F(x, y, z) = G(x, y, z) = 0, where F and G are C^1 functions;

iii. parametrically, as the range of a C^1 function $\mathbf{f}: \mathbb{R} \to \mathbb{R}^3$.

Thun
$$F(x,y,z)=0$$
 means $g=f(ze)$
 $G(x,y,z)=0$ means $z=g(x)$

There fore
$$S = \{(x,y,z): F(x,y,z) = 0\} \land \{(x,y,z): G(x,y,z) = 0\}$$

are the solutions to F(x,y,z) = G(x,y,z) = 0 which

means g = f(ze) and z = g(x) for every $(x,y,t) \in S$.

$$f(\alpha) = (x, f(x), g(x))$$

then the image is the curre defined by

$$g = f(ze)$$
 and $z = g(\pi)$

Need more general implicet function theorem ...

- **3.9 Theorem** (The Implicit Function Theorem for a System of Equations). Let $\mathbf{F}(\mathbf{x}, \mathbf{y})$ be an \mathbb{R}^k -valued function of class C^1 on some neighborhood of a point $(\mathbf{a}, \mathbf{b}) \in \mathbb{R}^{n+k}$ and let $B_{ij} = (\partial F_i/\partial y_j)(\mathbf{a}, \mathbf{b})$. Suppose that $\mathbf{F}(\mathbf{a}, \mathbf{b}) = \mathbf{0}$ and $\det B \neq 0$. Then there exist positive numbers r_0 , r_1 such that the following conclusions are valid.
 - a. For each \mathbf{x} in the ball $|\mathbf{x} \mathbf{a}| < r_0$ there is a unique \mathbf{y} such that $|\mathbf{y} \mathbf{b}| < r_1$ and $\mathbf{F}(\mathbf{x}, \mathbf{y}) = 0$. We denote this \mathbf{y} by $\mathbf{f}(\mathbf{x})$; in particular, $\mathbf{f}(\mathbf{a}) = \mathbf{b}$.
 - b. The function \mathbf{f} thus defined for $|\mathbf{x} \mathbf{a}| < r_0$ is of class C^1 , and its partial derivatives $\partial_{x_j} \mathbf{f}$ can be computed by differentiating the equations $\mathbf{F}(\mathbf{x}, \mathbf{f}(\mathbf{x})) = \mathbf{0}$ with respect to x_j and solving the resulting linear system of equations for $\partial_{x_j} f_1, \ldots, \partial_{x_j} f_k$.

Proof in appendix: B2

B.2 The Implicit Function Theorem

B.2 Theorem. Let $\mathbf{F}(\mathbf{x}, \mathbf{y})$ be an \mathbb{R}^k -valued function of class C^1 on some not borhood of a point $(\mathbf{a}, \mathbf{b}) \in \mathbb{R}^{n+k}$ and let $B_{kk} = (\partial F_k/\partial u_k)(\mathbf{a}, \mathbf{b})$. Suppose

please read this proof after fee exam over the