— Surfaces in R®. The standard ways of representing surfaces in 3-space are
analogous to the standard ways of representing curves in the plane:

B i, as the graph of a function, z = f(z,y) (ory = f(z,2) or z = f(y,2)), —
S @,5*“ where f is of class C'1; 1R R B

ii. s the locus of an equation F(x,¥, z) = 0, where F is of class C';
— Curve 53 F () sFXMWE) cof haed VF(xy,2) 20 for =,y,2)€S —
iii.” parametrically, as the range of a C'! function f : R? — R3,
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a. Let F be a real-valued function of class C* on an open set in R3, and let f - (aq b) — R2.
B S = {(z,y,2) : F(x,y,2) = 0}. Ifa € Sand VF(a) # O, thereisa . '
neighborhood N of a in R? such that S N N is the graph of a C* function f \
(either z = f(x,y), y = f(x,2), orx = f(y,2)).

b. Let f be a C'' mapping from an open set in R? into R3. If [0, f x 0,f](uo, vo) #
——— 0, there is a neighborhood N of (ug,vo) in R? such that the set {f(u,v) :
(u,v) € N} is the graph of a C'* function.
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Proof. Part (a) is a special case of Corollary 3.3. As for (b), let f = (¢, %, x). The

components of the cross product 9, f x 9,f are just the Jacobians d(p, v)/9(u,v),
(e, x)/0(u,v), and 9(¢, x)/0(u,v). Under the hypothesis of (b), at least one of

them — let us say d(p, 1) /d(u,v) — is nonzero at (ug, vg). The implicit function
theorem then guarantees that the pair of equations = = ¢ (u,v), y = ¥(u,v) can

be solved to yield u and v as C! functions of = and y near u = wug, v = v,

x = p(ug,v9), y = ¥(up,vp). Substituting these functions for u and v in the
equation z = x(u,v) then yields z as a C'* function of = and y whose graph is the

range of f. o




i. as a graph, y = f(x) and z = g(x) (or similar expressions with the coordi-
ates permuted), where f and ¢ are C'! functions; —

b")
ii.” ag the locus of two equations F(z,y,2) = G(x,y,2) = 0, where F and G
C'! functions;

iii. parametrically, as the range of a C'! function f : R — R3.
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3.9 Theorem (The Implicit Function Theorem for a System of Equations).
Let F(x,y) be an R*-valued function of class C'' on some neighborhood of a

point (a,b) € R"* and let B;; = (0F;/dy;)(a,b). Suppose that F(a,b) =0
~—— anddet B # 0. Then there exist pm, r1 such that the following ——

conclusions are valid.
a. For each X in the ball |x — a| < rq there is a unique y such that |y — b| < rq
and F(x,y) = 0. We denote this y by f(x); in particular, f(a) = b.
b. The function f thus defined for |x—a| < r¢ is of class C', and its partial deriva-
tives Oyt can be computed by differentiating the equations F(x,f(x)) = 0 ——
with respect to x; and solving the resulting linear system of equations for
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B.2 The Implicit Function Theorem

B.2 Theorem. Let F(x,y) be an RF-valued function of class C' on some ne

horhood of a noint (a h) € R 5 and let R.. — (AF:/Au:\a h) Sunnnse
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