- **3.9 Theorem** (The Implicit Function Theorem for a System of Equations). Let $\mathbf{F}(\mathbf{x}, \mathbf{y})$ be an \mathbb{R}^k -valued function of class C^1 on some neighborhood of a point $(\mathbf{a}, \mathbf{b}) \in \mathbb{R}^{n+k}$ and let $B_{ij} = (\partial F_i/\partial y_j)(\mathbf{a}, \mathbf{b})$. Suppose that $\mathbf{F}(\mathbf{a}, \mathbf{b}) = \mathbf{0}$ and $\det B \neq 0$. Then there exist positive numbers r_0, r_1 such that the following conclusions are valid.
- a. For each \mathbf{x} in the ball $|\mathbf{x} \mathbf{a}| < r_0$ there is a unique \mathbf{y} such that $|\mathbf{y} \mathbf{b}| < r_1$ and $\mathbf{F}(\mathbf{x}, \mathbf{y}) = 0$. We denote this \mathbf{y} by $\mathbf{f}(\mathbf{x})$; in particular, $\mathbf{f}(\mathbf{a}) = \mathbf{b}$.
- b. The function \mathbf{f} thus defined for $|\mathbf{x} \mathbf{a}| < r_0$ is of class C^1 , and its partial derivatives $\partial_{x_j} \mathbf{f}$ can be computed by differentiating the equations $\mathbf{F}(\mathbf{x}, \mathbf{f}(\mathbf{x})) = \mathbf{0}$ with respect to x_j and solving the resulting linear system of equations for $\partial_{x_j} f_1, \ldots, \partial_{x_j} f_k$.

Note (a,b) ER means a ER and b ERk

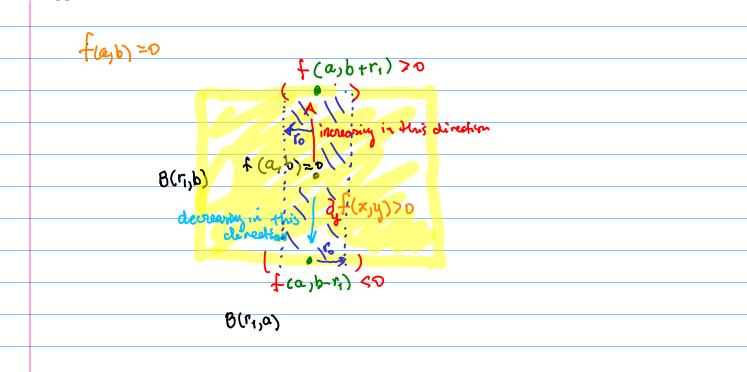
$$U \subseteq \mathbb{R}^{n+k}, \quad F: U \longrightarrow \mathbb{R}^{k}$$

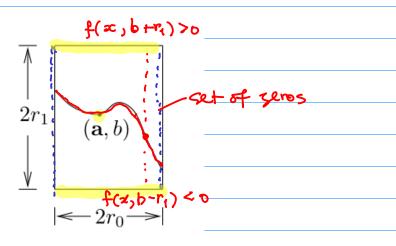
$$B = \left[\frac{\partial F_{i}}{\partial y_{i}} \right] = \left[\frac{\partial F_{i}}{\partial$$

$$f: B(r_0,a) \rightarrow B(r_1,b)$$
 note $B(r_0,a) \subseteq \mathbb{R}^n$ $B(r_1,b) \subseteq \mathbb{R}^k$

- **3.1 Theorem** (The Implicit Function Theorem for a Single Equation). Let $F(\mathbf{x}, y)$ be a function of class C^1 on some neighborhood of a point $(\mathbf{a}, b) \in \mathbb{R}^{n+1}$. Suppose that $F(\mathbf{a}, b) = 0$ and $\partial_y F(\mathbf{a}, b) \neq 0$. Then there exist positive numbers r_0, r_1 such that the following conclusions are valid.
- a. For each \mathbf{x} in the ball $|\mathbf{x} \mathbf{a}| < r_0$ there is a unique y such that $|y b| < r_1$ and $F(\mathbf{x}, y) = 0$. We denote this y by $f(\mathbf{x})$; in particular, $f(\mathbf{a}) = b$.
- b. The function f thus defined for $|\mathbf{x} \mathbf{a}| < r_0$ is of class C^1 , and its partial derivatives are given by

(3.2)
$$\partial_j f(\mathbf{x}) = -\frac{\partial_j F(\mathbf{x}, f(\mathbf{x}))}{\partial_y F(\mathbf{x}, f(\mathbf{x}))}.$$





3.18 Theorem (The Inverse Mapping Theorem). Let U and V be open sets in \mathbb{R}^n , $\mathbf{a} \in U$, and $\mathbf{b} = \mathbf{f}(\mathbf{a})$. Suppose that $\mathbf{f} : U \to V$ is a mapping of class C^1 and the Fréchet derivative $D\mathbf{f}(\mathbf{a})$ is invertible (that is, the Jacobian $\det D\mathbf{f}(\mathbf{a})$ is nonzero). Then there exist neighborhoods $M \subset U$ and $N \subset V$ of \mathbf{a} and \mathbf{b} , respectively, so that \mathbf{f} is a one-to-one map from M onto N, and the inverse map \mathbf{f}^{-1} from N to M is also of class C^1 . Moreover, if $\mathbf{y} = \mathbf{f}(\mathbf{x}) \in N$, $D(\mathbf{f}^{-1})(\mathbf{y}) = [D\mathbf{f}(\mathbf{x})]^{-1}$.

U, $V \subseteq \mathbb{R}^n$ $f: U \rightarrow V$ a $\subseteq U$ and $Df(a) \in \mathbb{R}^{n \times n}$ is invortible.

Part F(x,y) = f(x) - y thun solving. y = f(x) is the same as F(x,y) = 0where for x in terms of y and that $x \in \mathbb{R}^n$.