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Q&'&'& A simple closed curve in R" is a curve whose starting and ending points co-
incide, but that does not intersect itself otherwise. More precisely, a simple closed
curve is one that can be parametrized by a continuous map x = g(t), a < t < b,

such that g(a) = g(b) but g(s) # g(t) unless {s,t} = {a,b}. or g=4

(w4n+ 9
7 ond  q(a) =90b)
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4%¢L We shall use the term regular region to mean a compact set in K" that is the B
vQ' closure of its interior. Equivalently, a compact set S C R" is a regular region if ?;

every neighborhood of every point on the boundary 95 contains points in S™. For closed

example, a closed ball is a regular region, but a closed line segment in R" (n > 1) " bownddd

1s not, because its interior is empty.
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Now let n = 2. We say that a regular region S C R? has a piecewise smooth
boundary if the boundary 9S consists of a finite union of disjoint, piecewise
smooth simple closed curves, where “piecewise smooth’” has the meaning assigned
in the previous section. (We thus allow the possibility that S contains “holes,” so

The notion of arc length extends in an obvious way to piecewise smooth curves,
obtained by joining finitely many smooth curves together end-to-end but allow-
;\"\ ing corners or cusps at the joining points; we simply compute the lengths of the
) /¥ smooth pieces and add them up. We can express this more precisely in terms of
parametrizations, as follows: The function g : [a,b] — R"™ is called piecewise
smooth if (1) it is continuous, and (ii) its derivative exists and is continuous except
perhaps at finitely many points #; where the one-sided limits limy ;1 g'(f) exist.




that 11s bounaary may be aisconnected.) In tnis case, tne posiive orientation on o>
is the orientation on each of the closed curves that make up the boundary such that
the region S is on the left with respect to the positive direction on the curve. More
precisely, if x is a point on @S at which 05 is smooth, and t = (¢;, ¢5) is the unit
tangent vector in the positive direction at that point, then the vector n = (t9, —t1),
obtained by rotating t by 90° clockwise, points out of S. (That is, x + en ¢ S for
small € > 0.) See Figure 5.4.
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5.12 Theorem (Green’s Theorem). Suppose S is a regular region in R? with piece-
wise smooth boundary 9S. Suppose also that F is a vector field of class C* on S.

Then Pom:»dewy.db«‘) piecarovat swesth. Cunve..

In the more common notation, if we set B = (P.Q) and x = (. ),
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quite simple. We shall say that the region S is z-simple if it is the region between

the graphs of two functions of x, that is, if it has the form

(5.15) S={(z,y):a<a<b gi(z) <y < pa()},
-—‘-&w —

where ) and 9 are continuous, piecewise smooth functions on [a, b]. Likewise,

we say that S is y-simple if it has the form

P . ]

(5.16) S={(x,y):c<y<d Pi(y) <z <o(y)},

where v, and v, are continuous, piecewise smooth functions on [¢, d|.
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