- **1.** Fill the missing blanks to make the following definitions correct.
	- (i) A set $Z \subseteq \mathbb{R}^2$ is said to have **zero content** if for every $\varepsilon > 0$ there is a finite collection of rectangles R_1, \ldots, R_M such that

(ii) Let *C* be a curve described as the range of a one-to-one continuous mapping $g: [a, b] \to \mathbb{R}^n$. Given a partition $P = \{t_0, \ldots, t_J\}$ of $[a, b]$ define

Further let $\mathcal{L} = \{ L_P(C) : P \text{ is a partition of } [a, b] \}.$ The curve *C* is said to be **rectifiable** if the set \mathcal{L} is $|$.

2. Let $F: \mathbb{R}^3 \to \mathbb{R}^2$ be defined by

$$
F(x, y, z) = \begin{bmatrix} 2x + y^2 \\ \cos(xz) + \sin(yz) \\ 3y + 2z \end{bmatrix}.
$$

Compute the derivative *DF* and the Jacobian det *DF*.

- **3.** A set $S \subseteq \mathbb{R}^2$ is Jordan measurable if
	- (A) *S* is dense in \mathbb{R}^2 and S^c countable.
	- (B) c is dense in \mathbb{R}^2 and *S* countable.
	- (C) *S* is bounded and its boundary has zero content.
	- (D) $B(r, x) \cap S^c \neq \emptyset$ for every $x \in S$ and $r > 0$.
	- (E) none of these.
- **4.** Let *S* ⊂ **R**^{*n*}. The characteristic or indicator function of *S* is defined by
	- (A) $\chi_S(x) = \begin{cases} 1 & \text{if } x \notin S, \\ 0 & \text{otherwise} \end{cases}$ 0 otherwise. (B) $\chi_S(x) = \begin{cases} 1 & \text{if } x \in S, \\ 0 & \text{otherwise} \end{cases}$ 0 otherwise. (C) $\chi_2(x) = \exp(-iSx)$

$$
(C) \quad \chi_S(x) = \exp(-i\sigma x).
$$

- (D) $\chi_S(x) =$ *S f*(*y*)*e [−]ixydy*.
- (E) none of these.

5. Let *S* ⊆ **R**^{*n*} is disconnected if there exists non-empty subsets S_1, S_2 ⊆ **R**^{*n*} such that

- (A) $S = S_1 \cap S_2$ where $S_1 \cup \overline{S_2} = \emptyset$ and $\overline{S_1} \cup S_2 = \emptyset$.
- (B) $S = S_1 \cup S_2$ where $S_1 \cap \overline{S_2} = \emptyset$ and $\overline{S_1} \cap S_2 = \emptyset$.
- (C) $S = S_1 ∩ S_2$ where $S_1 ∪ \overline{S_2} \neq \emptyset$ and $\overline{S_1} ∪ S_2 \neq \emptyset$.
- (D) $S = S_1 \cup S_2$ where $S_1 \cap \overline{S_2} \neq \emptyset$ and $\overline{S_1} \cap S_2 \neq \emptyset$.
- (E) none of these.

6. A set *S* ⊆ **R**^{*n*} is called convex if

- (A) whenever $x \in S$ and $r > 0$ then $B(r, x) \cap S \neq \emptyset$ and $B(r, x) \cap S^c \neq \emptyset$.
- (B) whenever $x \in S$ there exists $r > 0$ such that $B(r, x) \cap S^c = \emptyset$.
- (C) whenever $a, b \in S$ there is a continuous map $f: [0, 1] \to \mathbb{R}^n$ such that $f(0) = a$, *f*(1) = *b* and *f*(*t*) \in *S* for all *t* \in [0, 1].
- (D) whenever $a, b \in S$ the line segment from a to b lies in S .
- (E) none of these.
- **7.** Please fill in the missing blanks to make the theorems correct.
	- **(i) The Change of Variables Theorem for Multiple Integrals:** Given open sets *U* and *V* in \mathbb{R}^n , let $G: U \to V$ be a one-to-one transformation of class *C*¹ whose derivative $DG(u)$ is invertible for all $u \in U$. Suppose that $T \subset U$ and $S \subset V$ are measurable sets such that $\overline{T} \subset U$ and $G(T) = S$. If *f* is an

integrable function on *S*, then $f \circ G$ is \vert on *T*, and

.

$$
\int \cdots \int_S f(x) d^n x = \int \cdots \int_T
$$

(ii) Green's Theorem: Suppose *S* is a

in \mathbb{R}^2 with piecewise smooth boundary ∂S . Suppose also *F* is a vector field of class C^1 on \overline{S} . Then

(iii) The Heine–Borel Theorem: If *S* is a subset of \mathbb{R}^n , the following are equivalent:

subcollection of U that

(iv) The Chain Rule I: Suppose that $q(t)$ is differentiable at $t = a$ and $f(x)$ is differentiable at $x = b$ where $b = g(a)$. Then the composite function $\phi(t) = f(g(t))$ is differentiable at $t = a$ and its derivative is given by

8. Prove one of the following theorems:

Theorem. Suppose *f* is a positive, decreasing function on the half-line $[1, \infty)$. Then the series $\sum_{n=1}^{\infty} f(n)$ converges if and only if the $\int_{1}^{\infty} f(x)dx$ converges. **Theorem.** The series $\sum_{n=1}^{\infty} n^{-p}$ converges if $p > 1$ and diverges if $p \leq 1$.

9. Prove one of the following theorems:

Theorem. If f is bounded and monotone on $[a, b]$, then f is integrable on $[a, b]$. **Theorem.** If f is continuous on $[a, b]$, then f is integrable on $[a, b]$.

10. Find \int_C \sqrt{z} *ds* where *C* is parametrized by $g(t) = (2 \cos t, 2 \sin t, t^2)$ for $0 \le t \le 2\pi$.

11. Sum the geometric series $\sum_{n=3}^{\infty} 5^{-n}$.

12. ∑ Give an example of a monotone decreasing sequence $\{a_n\}$ such that $a_n \to 0$ but $\sum_{n=1}^{\infty} a_n$ diverges.

13. Let *S* be a regular region in \mathbb{R}^2 with piecewise smooth boundary ∂S . **(i)** State what it means for *S* to be a regular region.

(ii) State what it means for *S* to be *x*-simple.

(iii) State what it means for *S* to be *y*-simple.

14. Recall the Taylor series expanded about $a = 0$ given by

$$
\sin x \sim x - \frac{1}{3!}x^3 + \frac{1}{5!}x^5 - \frac{1}{7!}x^7 + \cdots
$$
 and $\frac{1}{1-x} \sim 1 + x + x^2 + x^3 + x^4 + \cdots$

Find the Taylor polynomial of degree 4 for $f(x, y) = \frac{\sin(x + y)}{1}$ 1 *− xy* about $a = (0, 0)$.

15. Show that if $f: S \to \mathbb{R}^m$ is uniformly continuous on *S* and $\{x_k\}$ is a Cauchy sequence in *S*, then $\{f(x_k)\}\$ is also a Cauchy sequence.

16. Give an example of a Cauchy sequence $x_k \in (0, \infty)$ and a continuous function $f: (0, \infty) \to \mathbf{R}$ such that $f(x_k)$ is not Cauchy.

17. Let $P, Q: \mathbb{R}^2 \to \mathbb{R}$ be continuously differential functions. Let $R = [a, b] \times [c, d]$ and *∂R* be the boundary of *R* oriented in the counter clockwise direction. By definition

$$
\int_{\partial R} (Pdx + Qdy) = \int_a^b P(x, c)dx + \int_c^d Q(b, y)dy + \int_b^a P(x, d)dx + \int_d^c Q(a, y)dy.
$$

Use the fundamental theorem of calculus and the iterated integral theorem to prove Green's theorem on the rectange *R*. Namely, that

$$
\int_{\partial R} (Pdx + Qdy) = \int_{R} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) dx dy.
$$