Math 311 Quiz 3 Version A

1. Please fill in the missing blanks to make the theorem correct.

The Implicit Function Theorem for a System of Equations: Let F(x, y) be an \mathbf{R}^k -valued function of class C^1 on some neighborhood of a point $(a, b) \in \mathbf{R}^{n+k}$ and let $B_{ij} = (\partial F_i / \partial y_j)(a, b)$. Suppose that F(a, b) = 0 and \square . Then

there exist positive numbers r_0 and r_1 such that the following conclusions are valid.

- a. For each x in the ball $|x a| < r_0$ there is a unique y such that $|y b| < r_1$ and F(x, y) =. We denote this y by f(x). In particular, f(a) = b.
- b. The function f thus defined for $|x a| < r_0$ is of class and its partial derivatives $\partial f / \partial x_j$ can be computed by differentiating the equations F(x, f(x)) = 0

with respect to x_j and solving the resulting linear system for $\partial f_1/\partial x_j, \ldots, \partial f_k/\partial x_j$.

2. Suppose F(x, y) is a C^1 function such that F(0, 0) = 0. What conditions on F will guarantee that the equation F(F(x, y), y) = 0 can be solved for y as a C^1 function of x near (0, 0)?