- **1.** The open ball centered at $a \in \mathbb{R}^n$ of radius $r > 0$ is the set $B(r, a)$ where
	- $B(r, a) = \{x \in \mathbb{R}^n : ||x a|| \leq r\}.$
	- (B) $B(r, a) = \{x \in \mathbb{R}^n : ||x r|| \le a\}.$
	- (C) $B(r, a) = \{x \in \mathbb{R}^n : ||x a|| < r\}.$
	- $B(r, a) = \{x \in \mathbb{R}^n : ||x r|| < a\}.$
	- (E) none of these.
- **2.** Let $S \subseteq \mathbb{R}^n$. The set S^{int} of all interior points of *S* is given by
	- (A) *S*^{int} = { $x \in S : B(r, x) \subseteq S$ for some $r > 0$ }.
	- (B) $S^{int} = \{ x \in S : B(r, x) \supset S \text{ for some } r > 0 \}.$
	- (C) $S^{\text{int}} = \{ x \in S : B(r, x) \subseteq S \text{ for every } r > 0 \}.$
	- (D) $S^{\text{int}} = \{ x \in S : B(r, x) \supseteq S \text{ for every } r > 0 \}.$
	- (E) none of these.

3. Let *S* ⊆ **R**^{*n*} is disconnected if there exists non-empty subsets *S*₁*, S*₂ ⊆ **R**^{*n*} such that

- (A) $S = S_1 \cap S_2$ where $S_1 \cup \overline{S_2} = \emptyset$ and $\overline{S_1} \cup S_2 = \emptyset$.
- (B) $S = S_1 \cup S_2$ where $S_1 \cap \overline{S_2} = \emptyset$ and $\overline{S_1} \cap S_2 = \emptyset$.
- (C) $S = S_1 \cap S_2$ where $S_1 \cup \overline{S_2} \neq \emptyset$ and $\overline{S_1} \cup S_2 \neq \emptyset$.
- (D) $S = S_1 \cup S_2$ where $S_1 \cap \overline{S_2} \neq \emptyset$ and $\overline{S_1} \cap S_2 \neq \emptyset$.
- (E) none of these.

4. A set $S \subseteq \mathbb{R}^n$ is called convex if

- (A) whenever $x \in S$ and $r > 0$ then $B(r, x) \cap S \neq \emptyset$ and $B(r, x) \cap S^c \neq \emptyset$.
- (B) whenever $x \in S$ there exists $r > 0$ such that $B(r, x) \cap S^c = \emptyset$.
- (C) whenever $a, b \in S$ there is a continuous map $f: [0, 1] \to \mathbb{R}^n$ such that $f(0) = a$, *f*(1) = *b* and *f*(*t*) \in *S* for all *t* \in [0, 1].
- (D) whenever $a, b \in S$ the line segment from a to b lies in S .
- (E) none of these.

Math 311 Sample Midterm Version A

5. A function $f: \mathbb{R}^n \to \mathbb{R}$ is said to be differentiable at $a \in \mathbb{R}^n$ if

\n- (A) there exists
$$
c \in \mathbb{R}^n
$$
 such that $\lim_{h \to 0} \frac{f(a+h) + f(a) - c \cdot h}{|h|} = 0.$
\n- (B) there exists $c \in \mathbb{R}^n$ such that $\lim_{h \to 0} \frac{f(a+h) - f(a) - c \cdot h}{|h|} = 0.$
\n- (C) there exists $c \in \mathbb{R}^n$ such that $\lim_{h \to 0} \frac{f(a+h) + f(a) - c \cdot h}{|h|^2} = 0.$
\n- (D) there exists $c \in \mathbb{R}^n$ such that $\lim_{h \to 0} \frac{f(a+h) - f(a) - c \cdot h}{|h|^2} = 0.$
\n- (E) none of these.
\n

\n- **6.** Let
$$
f: \mathbb{R}^3 \to \mathbb{R}
$$
 be $f(x, y, z) = x^2 + y^3 + z^4$ and let α be the multi-index $\alpha = (1, 0, 3)$.
\n- (i) Find $(\frac{1}{5}, \frac{1}{3}, \frac{1}{2})^{\alpha}$.
\n

(ii) Find $\partial^{\alpha} f(3,2,1)$.

7. Please fill in the missing blanks to make the theorem correct.

The Heine–Borel Theorem: If *S* is a subset of \mathbb{R}^n , the following are equivalent:

8. Define a sequence x_k recursively by $x_1 =$ *√* 2 and $x_{k+1} =$ *√* $\overline{2 + x_k}$. Show by induction that $x_k < 2$ and that $x_k < x_{k+1}$ for all *k*.

9. State the Bolzano–Weierstrass Theorem in **R***ⁿ*.

10. Please fill in the missing blanks to make the theorem correct.

The Chain Rule I: Suppose that $g(t)$ is differentiable at $t = a$ and $f(x)$ is differentiable at $x = b$ where $b = g(a)$. Then the composite function $\phi(t) = f(g(t))$ is differentiable at $t = a$ and its derivative is given by

11. Give an example of a Cauchy sequence $x_k \in (0, \infty)$ and a continuous function $f: (0, \infty) \to \mathbf{R}$ such that $f(x_k)$ is not Cauchy.

12. Suppose $S \subseteq \mathbb{R}^n$ and $f: S \to \mathbb{R}^m$ is continuous at every point of *S*. If *S* is compact, then prove that *f* is uniformly continuous on *S*.

13. Please fill in the missing blanks to make the theorem correct.

Taylor's Theorem with Integral Remainder: Suppose $f: \mathbb{R}^n \to \mathbb{R}$ is of class C^{k+1} on an open convex set $S \subseteq \mathbb{R}^n$. If $a \in S$ and $a + h \in S$, then

$$
f(a+h) = \boxed{} + R_k(h)
$$

where

$$
R_k(h) = (k+1) \sum_{|\alpha|=k+1} \frac{h^{\alpha}}{\alpha!} \int_0^1 \left| \frac{h^{\alpha}}{\alpha!} \right| \, dt.
$$

 $\overline{\Gamma}$

 $\overline{\mathbb{L}}$

14. Recall the Taylor series expanded about $a = 0$ given by

$$
\sin x \sim x - \frac{1}{3!}x^3 + \frac{1}{5!}x^5 - \frac{1}{7!}x^7 + \cdots
$$
 and $\frac{1}{1-x} \sim 1 + x + x^2 + x^3 + x^4 + \cdots$

Find the Taylor polynomial of degree 4 for $f(x, y) = \frac{\sin(x + y)}{1}$ 1 *− xy* about $a = (0, 0)$.