- **1.** The open ball centered at $a \in \mathbf{R}^n$ of radius r > 0 is the set B(r, a) where
 - (A) $B(r, a) = \{ x \in \mathbf{R}^n : ||x a|| \le r \}.$
 - (B) $B(r,a) = \{ x \in \mathbf{R}^n : ||x r|| \le a \}.$
 - (C) $B(r, a) = \{ x \in \mathbf{R}^n : ||x a|| < r \}.$
 - (D) $B(r,a) = \{ x \in \mathbf{R}^n : ||x r|| < a \}.$
 - (E) none of these.
- **2.** Let $S \subseteq \mathbf{R}^n$. The set S^{int} of all interior points of S is given by
 - (A) $S^{\text{int}} = \{ x \in S : B(r, x) \subseteq S \text{ for some } r > 0 \}.$
 - (B) $S^{\text{int}} = \{ x \in S : B(r, x) \supseteq S \text{ for some } r > 0 \}.$
 - (C) $S^{\text{int}} = \{ x \in S : B(r, x) \subseteq S \text{ for every } r > 0 \}.$
 - (D) $S^{\text{int}} = \{ x \in S : B(r, x) \supseteq S \text{ for every } r > 0 \}.$
 - (E) none of these.

3. Let $S \subseteq \mathbf{R}^n$ is disconnected if there exists non-empty subsets $S_1, S_2 \subseteq \mathbf{R}^n$ such that

- (A) $S = S_1 \cap S_2$ where $S_1 \cup \overline{S_2} = \emptyset$ and $\overline{S_1} \cup S_2 = \emptyset$.
- (B) $S = S_1 \cup S_2$ where $S_1 \cap \overline{S_2} = \emptyset$ and $\overline{S_1} \cap S_2 = \emptyset$.
- (C) $S = S_1 \cap S_2$ where $S_1 \cup \overline{S_2} \neq \emptyset$ and $\overline{S_1} \cup S_2 \neq \emptyset$.
- (D) $S = S_1 \cup S_2$ where $S_1 \cap \overline{S_2} \neq \emptyset$ and $\overline{S_1} \cap S_2 \neq \emptyset$.
- (E) none of these.

4. A set $S \subseteq \mathbf{R}^n$ is called convex if

- (A) whenever $x \in S$ and r > 0 then $B(r, x) \cap S \neq \emptyset$ and $B(r, x) \cap S^c \neq \emptyset$.
- (B) whenever $x \in S$ there exists r > 0 such that $B(r, x) \cap S^c = \emptyset$.
- (C) whenever $a, b \in S$ there is a continuous map $f: [0, 1] \to \mathbb{R}^n$ such that f(0) = a, f(1) = b and $f(t) \in S$ for all $t \in [0, 1]$.
- (D) whenever $a, b \in S$ the line segment from a to b lies in S.
- (E) none of these.

Math 311 Sample Midterm Version A

5. A function $f: \mathbf{R}^n \to \mathbf{R}$ is said to be differentiable at $a \in \mathbf{R}^n$ if

(A) there exists
$$c \in \mathbf{R}^n$$
 such that $\lim_{h \to 0} \frac{f(a+h) + f(a) - c \cdot h}{|h|} = 0.$
(B) there exists $c \in \mathbf{R}^n$ such that $\lim_{h \to 0} \frac{f(a+h) - f(a) - c \cdot h}{|h|} = 0.$
(C) there exists $c \in \mathbf{R}^n$ such that $\lim_{h \to 0} \frac{f(a+h) + f(a) - c \cdot h}{|h|^2} = 0.$
(D) there exists $c \in \mathbf{R}^n$ such that $\lim_{h \to 0} \frac{f(a+h) - f(a) - c \cdot h}{|h|^2} = 0.$
(E) none of these.

(ii) Find $\partial^{\alpha} f(3,2,1)$.

7. Please fill in the missing blanks to make the theorem correct.

The Heine–Borel Theorem: If S is a subset of \mathbb{R}^n , the following are equivalent:

8. Define a sequence x_k recursively by $x_1 = \sqrt{2}$ and $x_{k+1} = \sqrt{2+x_k}$. Show by induction that $x_k < 2$ and that $x_k < x_{k+1}$ for all k.

9. State the Bolzano–Weierstrass Theorem in \mathbb{R}^n .

10. Please fill in the missing blanks to make the theorem correct.

The Chain Rule I: Suppose that g(t) is differentiable at t = a and f(x) is differentiable at x = b where b = g(a). Then the composite function $\phi(t) = f(g(t))$ is differentiable at t = a and its derivative is given by

11. Give an example of a Cauchy sequence $x_k \in (0, \infty)$ and a continuous function $f: (0, \infty) \to \mathbf{R}$ such that $f(x_k)$ is not Cauchy.

12. Suppose $S \subseteq \mathbf{R}^n$ and $f: S \to \mathbf{R}^m$ is continuous at every point of S. If S is compact, then prove that f is uniformly continuous on S.

13. Please fill in the missing blanks to make the theorem correct.

Taylor's Theorem with Integral Remainder: Suppose $f: \mathbb{R}^n \to \mathbb{R}$ is of class C^{k+1} on an open convex set $S \subseteq \mathbb{R}^n$. If $a \in S$ and $a + h \in S$, then

$$f(a+h) = + R_k(h)$$

where

$$R_k(h) = (k+1) \sum_{|\alpha|=k+1} \frac{h^{\alpha}}{\alpha!} \int_0^1 dt.$$

٦

Γ

14. Recall the Taylor series expanded about a = 0 given by

$$\sin x \sim x - \frac{1}{3!}x^3 + \frac{1}{5!}x^5 - \frac{1}{7!}x^7 + \cdots$$
 and $\frac{1}{1-x} \sim 1 + x + x^2 + x^3 + x^4 + \cdots$

Find the Taylor polynomial of degree 4 for $f(x,y) = \frac{\sin(x+y)}{1-xy}$ about a = (0,0).