330 LINEAR ALGEBRA I (3+0) 3 credits

Vector analysis continued; abstract vector spaces; bases, inner products; projections; orthogonal complements, least squares; linear maps, structure theorems; elementary spectral theory; applications. Corequisite(s): MATH 283 R.

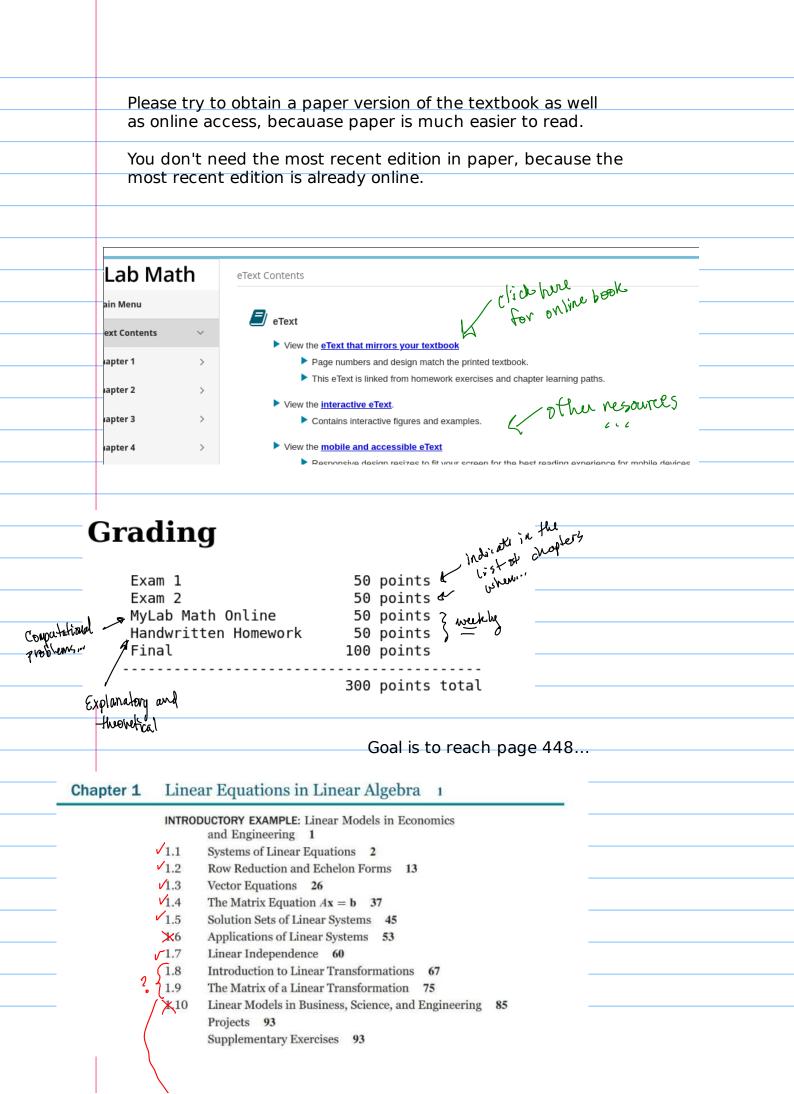
```
Instructor Course Section Time
Eric Olson Math 330-1004 Linear Algebra 11:00-11:50am MWF AB635
due to COVID the first
week is on Zoom
```

Class will begin at 11am...

Course Summary:

Date	Details	Due
Mon Aug 29, 2022	MATH 330.1006 Linear Algebra	11am to 12pm
Wed Aug 31, 2022	MATH 330.1006 Linear Algebra	11am to 12pm
Fri Sep 2, 2022	MATH 330.1006 Linear Algebra	11am to 12pm
Mon Sep 5, 2022	MATH 330.1006 Linear Algebra	11am to 12pm
Wed Sep 7, 2022	MATH 330.1006 Linear Algebra	11am to 12pm
live stream from th	e classroom	

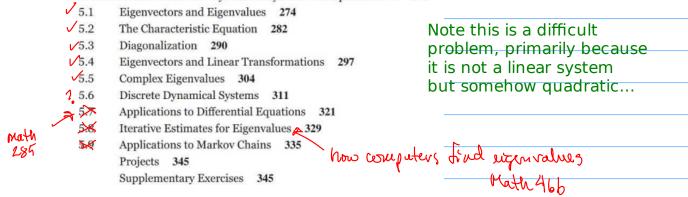
To register for Math 330.1006:


- 1. Go to https://mim.pearson.com/enrollment/olson90450
- 2. Sign in with your Pearson student account or create your account.

For Instructors creating a Student account, do not use your instructor credentials.

- 3. Select any available access option, if asked.
 - » Enter a prepaid access code that came with your textbook or from the bookstore.
 - » Buy instant access using a credit card or PayPal.
 - » Select Get temporary access without payment for 14 days.
- 4. Select Go to my course.
- 5. Select Math 330.1006 from My Courses.

I wait at last a week before paying.


If you contact Pearson Support, give them the course ID: alson90450.

Chapter 2	Matrix Algebra 97	
	 INTRODUCTORY EXAMPLE: Computer Models in Air 2.1 Matrix Operations 98 2.2 The Inverse of a Matrix 111 2.3 Characterizations of Invertible Matrices 1 2.4 Partitioned Matrices 126 2.5 Matrix Factorizations 132 2.6 The Leontief Input–Output Model 141 2.7 Applications to Computer Graphics 147 	
Fou s	ome Mine different	
Chapter 3	B Determinants 171	Is this Determinant chapte early because of corequisites?
	INTRODUCTORY EXAMPLE: Weighing Diamonds 171 $\sqrt{3.1}$ Introduction to Determinants 172	1
- Swatt	 73.2 Properties of Determinants 179 73.3 Cramer's Rule, Volume, and Linear Transform Projects 197 Supplementary Exercises 197 	Spiral method of teaching
Sharts Sharts Charles follow Course Jurechy Course Jurechy	3.3 Cramer's Rule, Volume, and Linear Transform Projects 197	Spiral method of teaching a main topic in Linear ecause they are not
Chapter 4 Chapter follow Could follow Could Source the Could Source the Chapter 4	 3.3 Cramer's Rule, Volume, and Linear Transform Projects 197 Supplementary Exercises 197 note determinants used to be a Algebranot so much now, be very useful for practical computed Supplementary Exercises 197 	Spiral method of teaching a main topic in Linear ecause they are not

Chapter 5 Eigenvalues and Eigenvectors 273

Chapter 6 Orthogonality and Least Squares 349

INTRO	DUCTORY EXAMPLE: Artificial Intelligence and Machine Learning 349	optimization problems
V 6.1	Inner Product, Length, and Orthogonality 350	quite important
6.2	Orthogonal Sets 358	for applications
V 6.3	Orthogonal Projections 367	
6.4	The Gram–Schmidt Process 376	
6.5	Least-Squares Problems 382	
6.6	Machine Learning and Linear Models 390	
6.7	Inner Product Spaces 399	
6.8	Applications of Inner Product Spaces 407	
	Projects 413	
	Supplementary Exercises 414	
Chapter 7 Symm	metric Matrices and Quadratic Forms 41	7
INTROD	OUCTORY EXAMPLE: Multichannel Image Processing 41'	7
✔ 7.1	Diagonalization of Symmetric Matrices 419	
78	Quadratic Forms 425	
\times	Constrained Optimization 432	
7.4	The Singular Value Decomposition 439	
7.5	Applications to Image Processing and Statistics 449	
Gealm	Projects 457	
	Supplementary Exercises 457	