Required Texts:
Linear Algebra and Its Applications, nth Edition by David C. Lay. https://www.pearson.com/mylab (class registration code)

4
click here from the
course webpage
Use free for now!
$\left\{\begin{aligned} x_{1}-2 x_{2}+x_{3} & =0 \\ 2 x_{2}-8 x_{0} & =8 \\ -5 x_{0} & =10\end{aligned} \quad \begin{array}{l}\text {-slue elimination } \\ 5 x_{\text {(1) }}\end{array}\right\}$ and substitution.... yore done

First time

$$
\left\{\begin{aligned}
x-2 y+z & =0 \\
2 y-8 z & =8 \\
5 x-5 z & =10
\end{aligned}\right.
$$

also

$$
x \in \mathbb{R}^{n}
$$

a rector with number of componuts sadicated by the, parameter n

Generalized notation

$$
x \in \mathbb{C}^{3}
$$

Three-dimusiasal rector with complex-num beer entries

All the inputs and outputs to linear algebra problem have been encoded into vectors and a matrix.

The same problem is written as $A x=b$

The method of elimination and substitution for solving $A x=b$ can be reinterpreted as a way of factoring the matrix A into two simpler matrices L and U .

What does it mean for $A=L U$?
lett hand side of the linear system
$1 x_{1}-2 x_{2}+x_{3}$
$2 x_{2}-8 x_{3}$ $5 x_{1}-5 x_{2}-8 x_{3} \quad$ or one vector-valued function

$$
\begin{aligned}
& f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}=\left[\begin{array}{r}
1 x_{1}-2 x_{2}+x_{3} \\
2 x_{2}-8 x_{3} \\
5 x_{1}-5 x_{3}
\end{array}\right] \quad f(x)=A x \\
& \text { left hand side of } \\
& \text { the linear } \\
& \text { system in } \\
& \text { metric } \\
& \text { notation } \\
& \text { In calculus oftor valued function coluunnvector... } \\
& f\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}-2 x_{2}+x_{3}, 2 x_{2}-8 x_{3}, 5 x_{1}-5 x_{3}\right) \\
& \text { Cousidu another - linear function } g: \mathbb{R}^{3} \Rightarrow R^{3} \\
& g(x)=\left[\begin{array}{c}
x_{2}-3 x_{3} \\
2 x_{1}+4 x_{2} \\
x_{1}+x_{2}+x_{3}
\end{array}\right] \quad B=\left[\begin{array}{ccc}
0 & 1 & -3 \\
2 & 4 & 0 \\
1 & 1 & l
\end{array}\right] \quad g(x)=B_{x}
\end{aligned}
$$

algebraically one can add, substract and compose vector - valued functions,".

$$
\begin{aligned}
& (f+g)(x)=\left[\begin{array}{c}
1 x_{1}-2 x_{2}+x_{3} \\
2 x_{2}-8 x_{3} \\
5 x_{1}-5 x_{3}
\end{array}\right]+\left[\begin{array}{c}
x_{2}-3 x_{3} \\
2 x_{1}+4 x_{2} \\
x_{1}+x_{2}+x_{3}
\end{array}\right]=\left[\begin{array}{l}
x_{1}-x_{2}-2 x_{3} \\
2 x_{1}+6 x_{2}-8 x_{3} \\
6 x_{1}+x_{2}-4 x_{3}
\end{array}\right] \\
& A x+B x=\left[\begin{array}{c}
x_{1}-x_{2}-2 x_{3} \\
2 x_{1}+6 x_{2}-8 x_{3} \\
6 x_{1}+x_{2}-4 x_{3}
\end{array}\right] \quad A+B=\left[\begin{array}{cc}
1-1 & -2 \\
2 & 6 \\
6 & -8
\end{array}\right]
\end{aligned}
$$

Matrix addition is the matrix you get from adding the corresponding linear functions.

Matrix multiplication is the matrix you get from composing the corresponding linear functions...

