Required Texts:

Linear Algebra and th s Applications, n-thledition by David C. Lay. https://www.pearson.com/mylab (class registration code)

Other resources:
MIT Open Courseware, Gilbert Strand, Spring 2010.
18-06-linear-algebra-spring-2010
Introduction to Applied Linear Algebra, Boyd and Vandenberghe. http://vmls-book.stanford.edu/

Lecture Notes

- Lecture 1: Overview of the Course
- Lecture 2: Systems of Linear Equations
10.

个
if not registered
online for the
publisher's homewarte
please do over
the weekender.

Matrices represent linear functions. What can you do with functions?
. Add and subtract them.
. Compose them
Find their inverses.
. Factor them, that is write $f(x)=g(h(x))$ the composition of two other functions.

Note: not any function can be represented by a matrix. But only linear functions. And any function which can be represented by a matrix is a linear function.
what is the matrix for the function $(f+g)(x)$?

$$
\widetilde{A+B}=\left[\begin{array}{ccc}
1 & -2 & 1 \\
0 & 2 & -8 \\
5 & 0 & -5
\end{array}\right]+\left[\begin{array}{ccc}
0 & 1 & -3 \\
2 & 4 & 0 \\
1 & 1 & 1
\end{array}\right]=\left[\begin{array}{ccc}
1 & -1 & -2 \\
2 & 6 & -8 \\
6 & 1 & -4
\end{array}\right]
$$

same as last time",
try to think about matrices, not as tables of numbers but as linear functions. Then all the operations we do start to make sense.
note columns of matrix correspond to the inputs of
the fractions:
Note adding matrices is pretty much the same as adding weird shaped vectors...

Multiplication...is composition of the function...
What is the matrix of the function $(f \circ g)(x)$?

Note that...if you add two linear functions, you get another linear function....and if you compose two of them, you get another linear function...
means you can do these operations again and again \rightarrow leads to an algebra of matrices.

$$
\begin{aligned}
& f(x)=\left[\begin{array}{r}
1 x_{1}-2 x_{2}+x_{3} \\
2 x_{2}-8 x_{3} \\
5 x_{1}-5 x_{3}
\end{array}\right] \quad g(x)=\left[\begin{array}{c}
x_{2}-3 x_{3} \\
2 x_{1}+4 x_{2} \\
x_{1}+x_{2}+x_{3}
\end{array}\right] \\
& \begin{array}{l}
g(x)=\left[\begin{array}{l}
x_{2}-3 x_{3} \\
2 x_{1}+4 x_{2} \\
x_{1}+x_{2}+x_{3}
\end{array}\right] \\
=\left[\begin{array}{l}
2\left(2 x_{1}+4 x_{2}\right)-8\left(x_{1}+x_{2}+x_{3}\right) \\
5\left(x_{2}-3 x_{3}\right)-5\left(x_{1}+x_{2}+x_{3}\right)
\end{array}\right]
\end{array} \\
& =\left[\begin{array}{lll}
-3 x_{1} & -6 x_{2} & -2 x_{3} \\
-4 x_{1}+0 x_{2} & -8 x_{3} \\
-5 x_{1}+0 x_{2} & -20 x_{3}
\end{array}\right], \text { (hus) } A B=\left[\begin{array}{ccc}
-3 & -6 & -2 \\
-4 & 0 & -8 \\
-5 & 0 & -20
\end{array}\right]
\end{aligned}
$$

Idea behind the whole course: Given a matrix can it be factored as a product of simpler matrices? Yes, but how?
. Gaussian Elimination finds the factorization $A=L U_{\propto} R$ matrices
. Gram-Schmidt algorithm finds the factorization $A=Q R$
. Eigenvalue decomposition $A=$ SD S $^{-1}$
or
matrices
: Singular value decomposition $A=U \Sigma V^{\top} \longleftarrow$ Matrices...
orthogonal matrix
Atagonal...
qq

main idea...the matrices that the origen
into are simpler in some way or the other..

overtire
first
Answer $A B$
matrix
Note that the rows of matrix A are dotted into the columns of matrix B to get the product $A B$

The augmented matrix does not correspond to a linear function!
It's just a table of numbers...

$$
[A \mid b] \text { augmented matrix ... }
$$

$$
A=\left[\begin{array}{ccc}
1 & -2 & +1 \\
0 & 2 & -8 \\
5 & 0 & -5
\end{array}\right]
$$

$$
b=\left[\begin{array}{c}
0 \\
8 \\
10
\end{array}\right]
$$

$$
\left\{\begin{array}{r}
1 x_{1}-2 x_{2}+x_{3}=0 \\
2 x_{2}-8 x_{3}=8 \\
5 x_{1}-5 x_{3}=10
\end{array}\right.
$$

Aacmunted matrix

$$
[A \mid b]=\left[\begin{array}{ccc|c}
1 & -2 & 1 & 0 \\
0 & 2 & -8 & 8 \\
5 & 0 & -5 & 10
\end{array}\right]
$$

The red line is optional ni
The advantage of augmented matrix is that all the numbers for the linear algebra problem are included...
and when performing the Gaussian Elimination algorithm, it can be worked with as if it were a matrix...

Notes:

Labor Day (no classes, campus closed) | Monday, 9/5/2022
we are in-person on Wednestay mat week...

