$$
\begin{aligned}
& {\left[\begin{array}{lll}
A & 1 & b
\end{array}\right]} \\
& {\left[\begin{array}{cccc}
1 & 0 & -3 & 8 \\
2 & 2 & 9 & 7 \\
0 & 1 & 5 & \sim 2
\end{array}\right] \quad\left[\begin{array}{r}
r_{2} \leftarrow r_{2}-2 r_{1} \\
x_{1} \\
x_{2}
\end{array} x_{3}\right.} \\
& {\left[\begin{array}{cccc}
1 & 0 & -3 & 8 \\
0 & 2 & 15 & -9 \\
0 & 1 & 5 & -2
\end{array}\right] \quad\left[\begin{array}{r}
r_{3} \sim r_{3}-\frac{1}{2} r_{2} \\
1
\end{array}\right.} \\
& \text { eliminate }
\end{aligned}
$$

$$
\left[\begin{array}{cccc}
x_{1} & x_{2} & -3 & 8 \\
1 & 0 & -3 & -9 \\
0 & 0 & 15 & -9 \\
0 & 0 & 4 & 5 / 2, \\
5 / 2
\end{array}\right] \text { to get from } A \text { to } U \text { I }
$$

$$
A=\left[\begin{array}{ccc}
1 & 0 & -3 \\
2 & 2 & 5 \\
0 & 1 & 5
\end{array}\right] \quad U=\left[\begin{array}{ccc}
1 & 0 & -3 \\
0 & 2 & 15 \\
0 & 0 & -3 / 2
\end{array}\right]
$$

To get from U to A, then undo the elimination steps in reverse order...

$$
\frac{r_{2} \leftarrow r_{2}-2 r_{1}}{r_{3}-r_{3}-\frac{1}{2} r_{2}}
$$

undo them in reverse order

$$
r_{3}+r_{3}+\frac{1}{2} r_{2}
$$

$$
r_{2}-r_{2}+2 r_{1}
$$

Matrix L represents these

Want factorization $A=L W$

To figure out what L is we need to think about the elementary row operations as linear functions...and consequently represent them using matrices...
$r_{3} \leftarrow(3)+\frac{1}{2} r_{2}$ is this a linear function?
row col. Yes its input is a
Matrix... out put matrix...output another matrix....

In general the row operation

$$
r_{i} \sim r_{i}+\alpha r_{j}
$$

is the same a matrix mull by a matrix with i's on the diagonal, α in the (i, j) position and O^{\prime} s everupurere else...
row operations
(1) $\left\{\begin{array}{l}r_{i} \sim r_{i}-\alpha r_{j} \quad i \neq j \\ r_{i} \leftrightarrow r_{j}\end{array}\right.$
(2) $\left\{\begin{array}{l}r_{i} \leftrightarrow r_{j} \quad i \neq j\end{array}\right.$
(3) $\int r_{i} \leftarrow \alpha r_{j} \quad \alpha \neq 0$

The identity motion is the veratrix that corresponds to the identity function...

$$
\begin{aligned}
& f(x)=x \text { identity function... it dow s } \\
& \text { nothing... }
\end{aligned}
$$

really in 3 -dimussion.

$$
f\left(x_{1}, x_{2}, x_{3}\right)=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
x_{1}+0 x_{2}+0 x_{3} \\
0 x_{1}+x_{2}+0 x_{3} \\
0 x_{1}+0 x_{2}+x_{3}
\end{array}\right]
$$

Thus the matrix is

$$
I \approx\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

That is it's the matrix with I's on the diagonal and O's everywhere else...

$$
r_{2} \leftrightarrow r_{3}\left[\begin{array}{ccc}
1 & 2 & 7 \\
-2 & 3 & 0 \\
5 & 1 & 3
\end{array}\right]=\left[\begin{array}{ccc}
1 & 2 & 7 \\
5 & 1 & 3 \\
-2 & 3 & 0
\end{array}\right]
$$

do
the row operation on the

The same." identity matrix

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{ccc}
1 & 2 & 7 \\
-2 & 3 & 0 \\
5 & 1 & 3
\end{array}\right]
$$

To find the matrix for the row operation, just perform the row operation on the identity matrix.

$$
\begin{aligned}
& A=\left[\begin{array}{ccc}
1 & 2 & 7 \\
-2 & 3 & 0 \\
5 & 1 & 3
\end{array}\right] \\
& r_{2} 7^{r_{3}}\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{ccc}
1 & 2 & 7 \\
5 & 1 & 3 \\
-2 & 3 & 0
\end{array}\right] \\
& {\left[r_{3}+r_{3}+\frac{1}{2} r_{2}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 1 / 2 & 1
\end{array}\right] \text { This one }} \\
& {\left[\begin{array}{c}
\left.r_{2} \& r_{2}+2 r_{1}\right] \\
\\
\substack{(2,1) \\
\text { position }}
\end{array}\left[\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right. \text { then this }} \\
& {\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 1 / 2 & 1
\end{array}\right]} \\
& {\left[\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \underbrace{\left[\begin{array}{ccc}
1 & 0 & 0 \\
2 & 1 & 0 \\
0 & 1 / 2 & 1
\end{array}\right]}_{\text {matrix } L}} \\
& \text { lack that the } \\
& \text { row operations } \\
& \text { don't interact } \\
& \text { when they are } \\
& \text { performed in } \\
& \text { the reverse order... }
\end{aligned}
$$

Theretore, $\quad A=L U$ or specificully...

$$
\left[\begin{array}{ccc}
1 & 0 & -3 \\
2 & 2 & 9 \\
0 & 1 & 5
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 0 \\
0 & 1 / 2 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & -3 \\
0 & 2 & 15 \\
0 & 0 & -5 / 2
\end{array}\right]
$$

chack this at home...

