Definition of span...
If $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}$ are in \mathbb{R}^{n}, then the set of all linear combinations of $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}$ is denoted by $\operatorname{Span}\left\{\mathrm{v}_{1}, \ldots, \mathrm{v}_{p}\right\}$ and is called the subset of \mathbb{R}^{n} spanned (or generated) by $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}$. That is, Span $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ is the collection of all vectors that can be written in the form

$$
c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{p} \mathbf{v}_{p}
$$

with c_{1}, \ldots, c_{p} scalars.

Theorem 5
If A is an $m \times n$ matrix, \mathbf{u} and \mathbf{v} are vectors in \mathbb{R}^{n}, and c is a scalar, then:
a. $A(\mathbf{u}+\mathbf{v})=A \mathbf{u}+A \mathbf{v}$;
b. $A(c \mathbf{u})=c(A \mathbf{u})$.
$\}$ properties of a linear function...

From my point of view this is obvious, because

$$
f(x)=A x
$$

was defined as the linear function of the lift side of a system of linear equations...

Idea in 1,5 to solve when right side is 0 . Homogeneous Linear Systems
A system of linear equations is said to be homogeneous if it can be written in the form $A \mathbf{x}=\mathbf{0}$, where A is an $m \times n$ matrix and $\mathbf{0}$ is the zero vector in \mathbb{R}^{m}. Such a system
If interested in factoring $A=W W$ then dou't need to wormy whats on right simplest set it equal 0 .
when a computer sower $A x=b$, the typical approach is to fact the left side first...

$$
A=L U
$$

Then we solve $\{L U x=$ bo . How? Is that easy? yes...

$$
\begin{aligned}
& (f \circ g)(x)=b \\
& f(g(x))=b \\
& \left\{\begin{array}{l}
\qquad \begin{array}{l}
y=U x \\
\text { sums substitute } L y=b \\
\text { thing }
\end{array} \quad \text { Lo } L y
\end{array}\right. \\
& y=g(x) \\
& f(y)=b \\
& \text { There, in semwiary } \\
& \left\{\begin{array}{l}
L y=b \text { easy to } \\
\text { solve for } y \text { here } \\
u_{x}=y / \text { plugin here }
\end{array}\right.
\end{aligned}
$$

then golve for x_{12}. which is also easy..

Chapter 1.3 Dot product...

$$
x, y \in \mathbb{R}^{A} \quad x=\left[\begin{array}{c}
1 \\
2 \\
3 \\
4
\end{array}\right] \quad y=\left[\begin{array}{c}
-1 \\
-3 \\
5 \\
2
\end{array}\right]
$$

Then

$$
\begin{aligned}
x \cdot y=\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right] \cdot\left[\begin{array}{c}
-1 \\
-3 \\
5 \\
2
\end{array}\right] & =1(-1)+(2)(-3)+(3)(5)+(4)(2) \\
& =-1-6+15+8=-7+23=16
\end{aligned}
$$

Compare with Matrix multiplication
of transpose, switches rows with

$$
\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right]^{\top}=\left[\begin{array}{llll}
1 & 2 & 3 & 4
\end{array}\right]
$$

Note, we've been thinking about matrices as representing linear functions. THat means they are more than just tables of numbers...

What does it mean, then, to switch the rows with the columns?

$$
\underset{\text { Matrix }}{\text { product }} \quad\left[\begin{array}{llll}
1 & 2 & 3 & 4
\end{array}\right]\left[\begin{array}{c}
-1 \\
-3 \\
5 \\
2
\end{array}\right]
$$

What's the answer?

$$
\begin{gathered}
\text { inner product } \\
\text { between two } \\
\text { vectors... }
\end{gathered}\left[\begin{array}{l}
-1 \\
-3 \\
5 \\
2
\end{array}\right]
$$ is here

What's the outer product." Transpose the other rector...

$$
\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right]\left[\begin{array}{llll}
-1 & -3 & 5 & 2
\end{array}\right]=\begin{aligned}
& \text { Transpose of } \\
& \text { other vector }
\end{aligned}
$$

Compute it. What's the answer

$$
\begin{aligned}
& {\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right]\left[\begin{array}{cccc}
-1 & -3 & 5 & 2 \\
-2 & -6 & 10 & 4 \\
-3 & -9 & 15 & 6 \\
-4 & -12 & 20 & 8
\end{array}\right]}
\end{aligned}
$$

The answer is a 4×4 matrix

From 1.5 \#(9

$$
\begin{aligned}
x_{1}+3 x_{2}+x_{3} & =1 \quad \text { Next time } \\
-4 x_{1}-9 x_{2}+2 x_{3} & =-1 \quad \text { N } \\
-3 x_{2}-6 x_{3} & =-3
\end{aligned}
$$

From 1.5 \# 7
In Exercises 7-12, describe all solutions of $A \mathbf{x}=\mathbf{0}$ in parametric vector form, where A is row equivalent to the given matrix.
7. $\left[\begin{array}{llll}1 & 3 & -3 & 7 \\ 0 & 1 & -4 & 5\end{array}\right]$
8. $\left[\begin{array}{rrrr}1 & -2 & -9 & 5 \\ 0 & 1 & 2 & -6\end{array}\right]$

$$
A=\left[\begin{array}{llll}
1 & 3 & -3 & 7 \\
0 & 1 & -4 & 5
\end{array}\right]
$$

Solve $A x=0$

Make it reduced Echelon form..

$$
\begin{aligned}
& \left.p \begin{array}{cccc}
p & F & F \\
1 & 0 & 9 & -5 \\
0 & 1 & -4 & 5
\end{array}\right] \\
& \left\{\begin{array}{ll}
x_{1}=-9 x_{1}-3 r_{2} \\
x_{2}=5 x_{4} & r_{1}
\end{array} \quad\right. \text { soleation }
\end{aligned}
$$

Parametric form

$$
x=\left[\begin{array}{c}
-0 \\
4
\end{array}\right] x_{3}+\left[\begin{array}{c}
5 \\
-5
\end{array}\right] x_{4}
$$

for any choice of x_{3} and x_{4}.

