This means if there is a dependency relation between the columns of A, those some dependency relations hold for the aotumne of U.

Note any $x \neq 0$ that solves $A x=0$ is a dependency relation betoreen the columns of A.

From monday we sowed $A x=0$ and obtaind.

$$
x=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
5 x_{3} \\
-2 x_{3} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
5 \\
-2 \\
1
\end{array}\right] x_{3}
$$

Thus setting $\begin{array}{r}x_{3}=1 \\ \text { anything }\end{array} \pm$ get that $x=\left[\begin{array}{c}5 \\ -2 \\ 1\end{array}\right]$ solves $A_{x}=0$

Ilikefor x_{3}

Since there avere free variable then $A x=0$ had nontrivial solutions.

$$
\left[\begin{array}{ccc}
1 & 3 & 1 \\
-4 & -9 & 2 \\
0 & -3 & -6
\end{array}\right]\left[\begin{array}{c}
5 \\
-2 \\
1
\end{array}\right]=0
$$

In the column representation of quafoix multiplication that mean

$$
\left[\begin{array}{c}
1 \\
-4 \\
0
\end{array}\right] 5+\left[\begin{array}{c}
3 \\
-9 \\
-3
\end{array}\right](-2)+\left[\begin{array}{l}
1 \\
2 \\
6
\end{array}\right](1)=0
$$

Thus

$$
\left.\begin{array}{l}
\text { Thus } \\
\left(\begin{array}{l}
\text { same } \\
\text { deperduany } \\
\text { as found } \\
\text { before }
\end{array}\right.
\end{array}\right)\left[\begin{array}{l}
1 \\
2 \\
6
\end{array}\right]=-\left[\begin{array}{c}
1 \\
-4 \\
0
\end{array}\right] 5-\left[\begin{array}{c}
3 \\
-9 \\
-3
\end{array}\right](-2)
$$

If a mutrix has more column than rows there must be at least I free variable If a set contains more vectors than there are entries in each vector, then the set is linearly dependent. That is, any set $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ in \mathbb{R}^{n} is linearly dependent if (rx $p>n$.

$$
\begin{aligned}
& p=\text { how many vectors } \quad n=\text { length of the vectors } \\
& p=4 \\
& \left\{\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
2 \\
7
\end{array}\right],\left[\begin{array}{c}
-2 \\
-3 \\
4
\end{array}\right]\right\}
\end{aligned}
$$

put the vectors into a matrix

$$
A=\left[\begin{array}{cccc}
1 & 1 & -1 & -2 \\
2 & 0 & 2 & -3 \\
3 & 1 & 7 & 4
\end{array}\right]
$$

- To find dependency relations in the columns of A we solve $A_{x}=0$
- To solve $A x=0$ we find the echelon form of A.
Now do row operations on A...
elimination steps $r_{i} \leftarrow r_{i} \sim \propto r_{j}$
to obtain U, the Echelouform...

$$
U=]_{\text {brows }}^{4 \text { columns }}[
$$

since each pivot needs a roo s thoneare at most 3 pivots... There are 4 variables because 4 columns Thus one of them must be a free variable:"

If a suatrix contains a column of zeros then it has a free variable.
If a set $S=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ in \mathbb{R}^{n} contains the zero vector, then the set is linearly dependent.

How to find the matrix corresponding to a row operation?
Perform the row operation on the 'identity uratrik.

$$
\left[r_{1}+r_{1}+2 r_{2}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right]
$$

For next time, please read section 1.9 about the geometric interpretation of other linear transformations (functions).

