$\lambda=1$
$1=5$

$$
\begin{aligned}
& =\frac{\left[\begin{array}{c}
-1 \\
-1 \\
1
\end{array}\right] \frac{x_{3}}{a}+\mathrm{Na} \text { Basis of } \mathrm{Na}(\mathrm{FI})}{}
\end{aligned}
$$

13. $\left[\begin{array}{rrr}2 & 2 & -1 \\ 1 & 3 & -1 \\ -1 & -2 & 2\end{array}\right]=-$

Getrs poit eigunvecters iato the matrix S

$$
S=\left[x_{1}\left|x_{2}\right| x_{3}\right]=\left[\begin{array}{ccc}
-2 & 1 & -1 \\
1 & 0 & -1 \\
0 & 1 & 1
\end{array}\right]
$$

Now

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
2 & 2 & -1 \\
1 & 3 & -1 \\
-1 & -2 & 2
\end{array}\right]\left[\begin{array}{ccc}
-2 & 1 & -1 \\
1 & 0 & -1 \\
0 & 1 & 1
\end{array}\right]=\left[\begin{array}{ccc}
-2 & 1 & 5 \cdot(-1) \\
1 & 0 & 5(-1) \\
0 & 1 & 5(1)
\end{array}\right]} \\
& A S=A\left[x_{1}\left|x_{2}\right| x_{3}\right]=\left[A x_{1}\left|A_{x_{2}}\right| \begin{array}{ll}
x_{3}
\end{array}\right] \\
& =\left[\lambda_{1} x_{1}\left|\lambda_{2} x_{2}\right| \lambda_{3} x_{3}\right]=[x_{1}\left|x_{2}\right| x_{3} \underbrace{\left[\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{2} & 0 \\
0 & 0 & \lambda_{3}
\end{array}\right]}_{D} \\
& \text { Thes, } \\
& A S=S D
\end{aligned}
$$

If s is invertible we can writo this ces

$$
A=\overbrace{\text { Factorization of } A \ldots S^{-1}}^{\sin }
$$

Other matrix factorizations
$A=L U$ \& 4 both matrices are triangular, so this Made if easy to solve $A x=6$. How?

$$
\left\{\begin{array}{l}
L y=b \\
U x=y
\end{array} \quad\right. \text { by substitution. }
$$

$$
A=Q R
$$

Grave schmidt orthoyonalizations column operations
upper triangular
matrix had orthonownal columns so $Q^{\top} Q=I$
Solve $A x=b$. How $Q R x=b$ null by $Q Q^{T}$ $\left\{R o=Q^{\top} b\right.$ by substitution
(another adroutage, the solution of $R_{P}=Q^{\top} b$ was the minimizer of $l(A x-b)$) when $A x=b$ is over deter mined and does int have asolution,)
not special inst another metres.
$A=S D 5^{-1}$

Though
ss just a bunch of numbers, the way if appears in the Factorization is special.

Obtained by solving the ligquivalur eigenvector problem $A x=9 x$ for λ and x.
Here the eigenvectors one the columns of S and the eigenvalues the diagonal of D

$$
A^{2}=\left(S D S^{-1}\right)\left(S D S^{-1}\right)=S D S_{S}^{-1} S D S^{-1}
$$

$$
A^{1}=S D^{2} S^{-1}
$$

also

$$
\begin{aligned}
A^{3} & =5 D^{3} S^{-1} \\
A^{4} & =5 D^{4} S^{-1} \\
& \vdots \\
A^{k} & =5 D^{k} S^{-1}
\end{aligned}
$$

What is D^{2} ?

$$
\begin{gathered}
{\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 1 & 0
\end{array}\right]} \\
{\left[\begin{array}{llll}
1 & 0 & 0 & 7 \\
0 & 1 & 0 \\
0 & 0 & 5
\end{array}\right]\left[\begin{array}{lll}
1^{2} & 0 & 0 \\
0 & 1^{2} & 0 \\
0 & 0 & 5^{2}
\end{array}\right]}
\end{gathered}
$$

Bacuples

$$
\begin{aligned}
\sin \left(\left[\begin{array}{ccc}
2 & 2 & -1 \\
1 & 3 & -1 \\
-1 & -2 & 2
\end{array}\right]\right) & =S(\sin B) S^{-1} \\
& =S\left[\begin{array}{ccc}
\sin 1 & 0 & 0 \\
0 & \sin 1 & 0 \\
0 & 0 & \sin 5
\end{array}\right] S^{-1}
\end{aligned}
$$

In fact, (almost) any faction that can be applied to the numbers $\lambda_{1}, \lambda_{2}, \lambda_{3} \ldots$ can now be applied to a matrix.

$$
A^{1 / 2}=\left[\begin{array}{ccc}
2 & 2 & -1 \\
1 & 3 & -1 \\
-1 & -2 & 2
\end{array}\right]^{1 / 2}=9\left[\begin{array}{ccc}
\sqrt{1} & 0 & 0 \\
0 & \sqrt{1} & 0 \\
0 & 0 & \sqrt{5}
\end{array} S^{-1}\right.
$$

Check that it works cu

$$
\begin{aligned}
& \text { Check that it works cu } \\
& \begin{aligned}
A^{1 / 2} A^{1 / 2} & =S\left[\begin{array}{ccc}
\sqrt{1} & 0 & 0 \\
0 & \sqrt{1} & 0 \\
0 & 0 & \sqrt{5}
\end{array}\right] s^{-1} \%\left[\begin{array}{ccc}
\sqrt{1} & 0 & 0 \\
0 & \sqrt{1} & 0 \\
0 & 0 & \sqrt{5}
\end{array}\right] S^{-1} \\
& =S\left[\begin{array}{ccc}
\sqrt{1} & 0 & 0 \\
0 & \sqrt{1} & 0 \\
0 & 0 & \sqrt{5}
\end{array}\right]\left[\begin{array}{ccc}
\sqrt{1} & 0 & 0 \\
0 & \sqrt{1} & 0 \\
0 & 0 & \sqrt{5}
\end{array}\right] S^{-1} \\
& =S D S^{-1}=A .
\end{aligned} .
\end{aligned}
$$

Possichle problems what if the diagonal entries are negative?
General problem w hat is S is not invertible?
in this case the factorisation didu 4 even exist..
(1) Joust be square, so a matrix $A \in R^{n e n}$ must have n uquivectors.
(2) Those eigpuvectors must be linearly independent.

Recall the matrix

$$
A=\left[\begin{array}{rr}
3 & -1 \\
1 & 5
\end{array}\right]
$$

from last tine had only one linearly indepenalut uigurvector $x=\left[\begin{array}{c}-1 \\ 1\end{array}\right]$ with eifucralue $\lambda=4$.
This, A can not be factored as $A=S D S^{-1}$ where D is a diagonal matrix. If you could write A ar SDSt that would iupliy the columns of 5 were engin rectors of A and the diagonal entries of D the corresponding eigen values, which couldn't be the call because there is only one linearly inclep-udent digguector.

Note that if x_{1} and x_{2} are ingenvectors for different eigenvalues $\lambda_{1} \neq \lambda_{2}$. Thur x_{1} and x_{2} must be linearly iolependent.

Thus, if you have enough eigluvectors, you already know s is invertible.

