

$$
q=\frac{y}{\|y\|} \quad p=(q \cdot x) q
$$

$$
w=\operatorname{span}\{y\}=\operatorname{span}\{q\}
$$

write $x=p+z$
where $p \in W$ and $q \in W^{1}$

Generalize this suppose instead of 1 dimensional thee W is higher dicuenscoud subspace.

$$
w=\operatorname{span}\left\{r_{1}, v_{2}, \ldots, r_{n}\right\}=\operatorname{col} A
$$

set of vectors
Erouple W is a dimensional

$$
\left.A=\left[v_{1}\left|V_{2}\right| \ldots\right\} v_{n}\right\}
$$

$$
\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}
$$

is the vectors are independent thun this) is abasis and. drombt $=n$.
useful in optionization problem.

Question: How to find p ? In looking for soweshing similar to $p=(q \cdot x) q$ for higher dimensional sulospaces.

Algoocthon: Gram-Schonidt algorithm:
(1) Column operations to factor a matrix $A=Q R$ where $Q^{\top} Q=I$ and R is upper triangular.
(2) Is a ray to fern ar basis for W
into the hogue dimensional version of the q in $p=(q \cdot x) q$.

Suppose $W=\operatorname{span}\left\{v_{1}, v_{2}\right\} \quad$ and that these vectors are $v_{1}, v_{2} \in W$ independent. Thus $\left\{v_{1}, v_{2}\right\}$ form a basis of w and dion W $=2$.

W

$$
\begin{aligned}
& p=\left(q \cdot v_{2}\right) q \text { where } q=\frac{v_{1}}{v v_{1} \|} \\
& z=v_{2}-p
\end{aligned}
$$

Note that $W=\operatorname{span}\left\{v_{1}, z\right\} \quad$ Why? $W=\operatorname{span}\left\{v_{1}, v_{2}\right\}=\operatorname{col} A$

Trying to explain why this is the same...

$$
v_{2}=z+p
$$

This shoes that $w \in W$ con be written as a linear courbiuntion of r_{1} and z. So $w \in \operatorname{Span}\left\{v_{1}, z\right\}$
where $A=\left[v_{1} \mid V_{2}\right]$ - Thus anypoiat $w \in W$ can be written $w=A x$ for some $x \in \mathbb{R}^{2}$. Thus...

$$
w=x_{1} v_{1}+x_{2} v_{2}
$$

$$
w=x_{1} v_{1}+x_{2}(z+p)
$$

$$
\text { \&i on } \quad \begin{aligned}
w & =x_{1} v_{1}+x_{2}\left(z+\left(q \cdot v_{2}\right) q\right) \\
& =x_{1} v_{1}+x_{2} z+x_{2}\left(q \cdot v_{2}\right) \frac{v_{1}}{\| v_{11}} \\
w & =\left(x_{1}+\frac{x_{2}\left(q \cdot v_{2}\right)}{\left\|v_{1}\right\|}\right) v_{1}+x_{2} z
\end{aligned}
$$

So $W=\operatorname{span}\left\{v_{1}, v_{2}\right\}=\operatorname{span}\left\{v_{1}, z\right\}=\operatorname{span}\left\{q_{1}, z\right\}$
Note here que are where $z=v_{2}-p$
subtracting come thing from V_{2} so it's perpendicular to r_{1}.

Now define $q_{2}=\frac{z}{\|z\|}$ then $w=\operatorname{span}\left\{q_{1}, q_{2}\right\}$

Gram-Schmidt algorithm generalizes this idea of subtracting staff to make vectors perpendicular to larger sets of vectors...

Let $\left\{v_{1}, v_{2}, \ldots, V_{d}\right\}$ be cubaris for w. Then
$z_{1}=V_{1}$
$z_{2}=v_{2}-\left(q_{1} \cdot v_{2}\right) q_{1}$
$z_{3}=v_{3}-\left(q_{1} \cdot v_{3}\right) q_{1}-\left(q_{2} \cdot v_{3}\right) q_{2}$
\vdots

$$
\begin{aligned}
& q_{1}=\frac{z_{1}}{\left\|z_{1}\right\|} \\
& q_{2}=\frac{z_{2}}{\| z_{2 \|}} \\
& q_{3}=\frac{z_{3}}{\left\|z_{3}\right\|}
\end{aligned}
$$

シ

$$
\begin{array}{r}
z_{n}=V_{n}-\left(q_{1} \cdot v_{n}\right) q_{1}-\left(q_{2} \cdot v_{n}\right) q_{2}-\cdots-\left(q_{n-1} \cdot V_{n}\right) q_{n-1} \\
q_{n}=\frac{z_{n}}{\left(\mid z_{n} \|\right)}
\end{array}
$$

When clone $-q_{1} \cdot q_{2}=0 \quad q_{1} \cdot q_{3}=0 \quad \cdots \quad q_{i} \cdot q_{j}=0$ for $i \neq j$ that is all the ques ane perpendicular to each other.

- Also $\| q_{i} l l=1$ for all vectors q_{i}.
- $W=\operatorname{span}\left\{q_{1}, q_{2}, \ldots, q_{n}\right\}$

Next time use this to factor $A=Q R$

