The eigenvalue eigenvector program transforms matrix vector multiplication into scalar vector multiplication...that's much simpler...

If x is an eigenvector for $A \in \mathbb{R}^{n \times n}$ and λ. is the corresponding eigenvalue, ia scalar...

Idea given A then solve for x and λ

$$
\begin{aligned}
& A x-\lambda x=0 \\
& \underbrace{(A-\lambda I)}_{B=A-\lambda I} x=0 \quad \begin{array}{l}
\text { exclude the solution } x=0 \\
\text { because itls not useful. }
\end{array}
\end{aligned}
$$

Solving $B x=0$ (homogeneous equation) the $x x^{\prime} s$ which satisfy this $N u l(B)=\{x: B x=0\}$.
B mast have free variable for there to be a non-zero solution x to $B x=0$.

For B to have free variables means B is not invertible

If B is not invertible then $\operatorname{det} B=0$, $\binom{$ if $\operatorname{det} B \neq 0$ then Cramerls rule }{ would imply B was invertible.... }

$$
B=A-\lambda I
$$

Need $\operatorname{det}(A-\lambda I) \approx 0$
called characteristic equation.
Characteristic polynomial $x(\lambda)=\operatorname{det}(A-\lambda I)$.
Muss $X(\lambda)=0$ is the characteristic equation.
Example:

$$
\text { 13. } \begin{aligned}
A & =\left[\begin{array}{ccc}
4 & 0 & 1 \\
-2 & 1 & 0 \\
-2 & 0 & 1
\end{array}\right], \lambda=1,2,3 \\
(\lambda) & =\operatorname{det}(A-\lambda I)=\operatorname{det} \left\lvert\,=\left[\begin{array}{r}
4 \\
-2 \\
-2
\end{array}\right.\right. \\
& =\operatorname{det}\left[\begin{array}{ccc}
4-\lambda & 0 & 1 \\
-2 & 1-\lambda & 0 \\
-2 & 0 & 1-\lambda
\end{array}\right]
\end{aligned}
$$

Note setting $\lambda=1$ yields

Trying to solve $f(\lambda)=0$ i.e. verify that $\lambda(1)=0$ $\lambda(2)=0$ and $\lambda(3)=0$

$$
X(\lambda)=\operatorname{det}(A-\lambda I)=\operatorname{det}\left(\left[\begin{array}{ccc}
4 & 0 & 1 \\
-2 & 1 & 0 \\
-2 & 0 & 1
\end{array}\right]-\lambda\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)
$$

difticueff to use Gaussian dincination to find the determinant, because the variole λ is unknown se it's difficult to know what terms are zero.

$$
\begin{aligned}
& x(\lambda)=\operatorname{det}\left[\begin{array}{ccc}
4-\lambda & 0 & 1 \\
-2 & 1-\lambda & 0 \\
-2 & 0 & 1-\lambda
\end{array}\right] \\
&=-0 \operatorname{det} B_{12}+(1 \sim \lambda) \operatorname{det} B_{22}-0 \operatorname{det} B_{32} \\
& 1+2 \text { odd } \\
&=(1-\lambda) \operatorname{def}\left[\begin{array}{cc}
4-\lambda & 1 \\
-2 & 1-\lambda
\end{array}\right]=(1-\lambda)[(4-\lambda)(1-\lambda)+2] \\
&=(1 \sim \lambda)\left[4-5 \lambda+\lambda^{2}+2\right]=(1-\lambda)\left(\lambda^{2}-5 \lambda+6\right) \\
&=(1-\lambda)(\lambda-3)(\lambda-2)=0 \quad \text { yield } \lambda=1,2 \text { or } 3
\end{aligned}
$$

GOA2 this is a cubic eq. for λ,
Use this algorithm to factor the matrix A
First let's solve for the x vectors...
there will be lots of themis

$$
\left.\begin{array}{rl}
\lambda=1 & \operatorname{Nul}(A-f \cdot I)
\end{array}\right)=\operatorname{Nul}\left[\begin{array}{ccc}
4-1 & 0 & 1 \\
-2 & 1-1 & 0 \\
-2 & 0 & 1-1
\end{array}\right]
$$

$$
\left\{\begin{array}{lll}
3 x_{1}+x_{3}=0 & x_{1}=0 & \text { vector form of soto } \\
-2 x_{1}=0 & x_{3}=0 & x=\left[\begin{array}{l}
0 \\
1 \\
-2 x_{1}=0
\end{array}\right. \\
x_{2}=x_{2} & \text { x }
\end{array} x_{2}\right.
$$

eigenvector
any of these x^{\prime} ? are eigenvectors for' $\lambda=1$

$$
\begin{aligned}
& \lambda=2 \quad \operatorname{Nul}(A-2 \cdot I)=\operatorname{Nul}\left[\begin{array}{ccc}
4-2 & 0 & 1 \\
-2 & 1-2 & 0 \\
-2 & 0 & 1-2
\end{array}\right] \\
& =N u l \underbrace{\left[\begin{array}{ccc}
2 & 0 & 1 \\
-2 & -1 & 0 \\
-2 & 0 & -1
\end{array}\right]}_{B} \\
& \text { Solve } B x=0 \\
& r_{2}-r_{2}+r_{1} \\
& r_{3} \leftarrow r_{3}+r_{1} \\
& =N_{u l}\left[\begin{array}{ccc}
P & p & F \\
2 & 0 & 1 \\
0 & -1 & 1 \\
0 & 0 & 0
\end{array}\right] \\
& 2 x_{1}+x_{3}=0 \quad x_{1}=-\frac{1}{2} x_{3} \\
& -x_{2}+x_{3}=0 \quad x_{2}=x_{3} \\
& \text { eigenvector }\left[\begin{array}{r}
-1 \\
2 \\
2
\end{array}\right] \\
& x=\left[\begin{array}{c}
-1 / 2 \\
1 \\
1
\end{array}\right] x_{3} \\
& \lambda=3 \\
& \operatorname{Nul}(A-3 I)=\operatorname{Nul}\left[\begin{array}{ccc}
4-3 & 0 & 1 \\
-2 & 1-3 & 0 \\
-2 & 0 & 1-3
\end{array}\right]
\end{aligned}
$$

$$
\left.\begin{array}{l}
=N u l\left[\begin{array}{ccc}
1 & 0 & 1 \\
-2 & -2 & 0 \\
-2 & 0 & -2
\end{array}\right]
\end{array} \begin{array}{ll}
r_{2} \leftarrow r_{2}+2 r_{1} \\
r_{3} \leftarrow r_{3}+2 r_{1}
\end{array}\right] \begin{array}{ccc}
1 & p & F \\
=N u \left\lvert\,\left[\begin{array}{ccc}
1 & 0 & 1 \\
0 & -2 & 2 \\
0 & 0 & 0
\end{array}\right]\right. & \therefore r_{2} \leftarrow-\frac{1}{2} r_{2} \\
=N u l\left[\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right] \quad \begin{array}{ll}
x_{1}+x_{3}=0 & x_{1}=-x_{3} \\
x_{2}-x_{3}=0 & x_{2}=x_{3} \\
\text { vector form solution is }
\end{array}
\end{array}
$$

Vector form solution is
Corres ponding eigenveetor to $\lambda=3$ is $x=\left[\begin{array}{c}-1 \\ 1 \\ 1\end{array}\right]$

$$
x=\left[\begin{array}{r}
-1 \\
1 \\
1
\end{array}\right] x_{3}
$$

eigenvalue eigenvecton
Ln

$$
\lambda=1
$$

$$
x=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]
$$

$$
\lambda=2 \quad r\left[\begin{array}{r}
-1 \\
2 \\
2
\end{array}\right]
$$

$$
\lambda=3 \quad=\left[\begin{array}{r}
-1 \\
l \\
6
\end{array}\right]
$$

Use this to factor the matrix A.

$$
\begin{aligned}
& =\left[\begin{array}{rrr}
4 & 0 & 1 \\
-2 & 1 & 0 \\
-2 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] \approx 1\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] \\
& =\left[\begin{array}{rrr}
4 & 0 & 1 \\
-2 & 1 & 0 \\
-2 & 0 & 1
\end{array}\right]\left[\begin{array}{r}
-1 \\
2 \\
2
\end{array}\right] \approx 2\left[\begin{array}{r}
-1 \\
2 \\
2
\end{array}\right] \\
& =\left[\begin{array}{rrr}
4 & 0 & 1 \\
-2 & 1 & 0 \\
-2 & 0 & 1
\end{array}\right]\left[\begin{array}{r}
-1 \\
5 \\
l
\end{array}\right]=3\left[\begin{array}{r}
-1 \\
l \\
l
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\left[\begin{array}{rrr}
4 & 0 & 1 \\
-2 & 1 & 0 \\
-2 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
0 & -1 & -1 \\
1 & 2 & 1 \\
0 & 2 & 1
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
1 \\
1
\end{array}\right]\left[2\left[\begin{array}{c}
-1 \\
2 \\
2
\end{array}\right]\left[3\left[\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right]\right]\right. \\
& \quad=\left[\begin{array}{ccc}
0 & -1 & -1 \\
1 & 2 & 1 \\
0 & 2 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right]
\end{aligned}
$$

Set.

$$
\delta=\left[\begin{array}{ccc}
0 & -1 & -1 \\
1 & 2 & 1 \\
0 & 2 & 1
\end{array}\right] \quad D=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right]
$$

then
$A S=5 D$ thus $A=S D S^{-1}$ \& factorization Q molt on the right by s^{-1} ?

