Correspondence between matrices \& linear fometions:

$$
A=\left[\begin{array}{ccc}
1 & -2 & 1 \\
3 & 5 & -7 \\
0 & 7 & -1
\end{array}\right] \Leftrightarrow f\left(x_{1}, x_{2}, x_{3}\right)
$$

$$
A\left[\begin{array}{c}
1 \\
-1 \\
2
\end{array}\right]=\left[\begin{array}{c}
5 \\
-16 \\
-9
\end{array}\right]=f(1,-1,2)
$$

1. Viewing matrix vector mult as a bunch of dot products...

2. View as linear combinations, of vectors.-.
$A\left[\begin{array}{c}1 \\ -1 \\ 2\end{array}\right]=\left[\begin{array}{l}1 \\ 3 \\ 0\end{array}\right] \cdot 1+\left[\begin{array}{c}-2 \\ 9 \\ 7\end{array}\right](-1)+\left[\begin{array}{c}1 \\ -7 \\ -1\end{array}\right](2)=\left[\begin{array}{c}5 \\ -16 \\ -9\end{array}\right]$

Let A be an $m \times n$ matrix. Then the following statements are logically equivalent. That is, for a particular A, either they are all true statements or they are all false.
a. For each \mathbf{b} in \mathbb{R}^{m}, the equation $A \mathbf{x}=\mathbf{b}$ has a solution.
b. Each \mathbf{b} in \mathbb{R}^{m} is a linear combination of the columns of A.
c. The columns of A spar \mathbb{R}^{m}. every thing
d. A has a pivot position in every row.
\& Why is this the same?

$$
\left[\begin{array}{ccc}
1 & -2 & 1 \\
3 & 5 & -7 \\
0 & 7 & -1
\end{array}\right]=\left[a_{1} \mid a_{2}\left(a_{3}\right)\right.
$$

K why is this the same?

$$
\begin{gathered}
a_{1}=\left[\begin{array}{l}
1 \\
3 \\
0
\end{array}\right] a_{2}=\left[\begin{array}{r}
-2 \\
5 \\
7
\end{array}\right] \\
a_{3}=\left[\begin{array}{c}
1 \\
-7 \\
-1
\end{array}\right]
\end{gathered}
$$

The span is just a notation for things we already know...

$$
\begin{array}{r}
\oint_{\operatorname{pan}\left(a_{1}, a_{2}, a_{3}\right)}=\left\{\begin{array}{r}
a_{1} c_{1}+a_{2} c_{2}+a_{3} c_{3}: c_{1} \in \mathbb{R}, c_{2} \in \mathbb{R}, c_{3} \in \mathbb{R} \\
\\
\text { if any of these terms you know...then } \\
\text { the other mean exactly the same thing... }
\end{array}\right. \\
=\left\{A x: x \in \mathbb{R}^{3}\right\}=\operatorname{range}(f) \\
\text { ow here } f(x)=A x .
\end{array}
$$

If there is a ping in every row then there is no row that's all zeros in the edielon form of A.
which means there is no compatibility condition of the form $O=C$ a last time So any right hand side is okay.

THEOREM 5 margin notes made in the book during class

in one dimension a linear function is a line that passes through the origin
$f(x)=3 x$
$f(2)+f(5)=3 \cdot 2+3 \cdot 5$

$$
=3(2+5)=f(2+5)
$$

Start of Section 1.5
Homogeneous equations $A x=0$
$f(x+y)=f(x)+f(y)$
$f(c x)=c f(x)$ $+\mathbf{v}$ as weights.

11

$$
f(4 \cdot 2)=3 \cdot 4 \cdot 2=4 \cdot 3 \cdot 2
$$

$$
=4 f(2)
$$

means $f(x)$ is a linear function if
$A=\left[\begin{array}{lll}\mathbf{a}_{1} & \mathbf{a}_{2} & \mathbf{a}_{3}\end{array}\right]$, and \mathbf{u}, \mathbf{v} in \mathbb{R}^{3}. (The proof of $1,2,3$, let u_{i} and v_{i} be the t thentries in \mathbf{u} and \mathbf{v}, compute $A(\mathbf{u}+\mathbf{v})$ as a linear combination of the

$$
f(-x)=f(-1 \cdot x)
$$

$$
f(x)+f(y)=f(x)+f(-x)=f(x)-f(x)=0
$$

what makes zero on the right side different than other right-hand sides is that the column
stays zero no matter stays zero no matter are done
t
$\left.\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$

$$
\begin{array}{r}
r_{2}-r_{2}-3 r_{1} \\
r_{1} \\
\text { row }
\end{array}
$$

$$
\left[\begin{array}{ccc|c}
1 & -2 & 1 & 0 \\
0 & 11 & -10 & 0 \\
0 & 7 & -1 & 0
\end{array}\right]
$$

focus on the matrix A is enough i..
still
zeros in thus column...

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
1 & -2 & 1 \\
0 & 11 & -10 \\
0 & 0 & \frac{59}{11}
\end{array}\right]=U} \\
& -1-\frac{7}{11}(-10) \\
& =-1+\frac{70}{11}=\frac{70-11}{11} \\
& =\frac{59}{11} \\
& \left.\begin{array}{c}
A=L D \\
-1 \\
1 \\
-2
\end{array} 1 \begin{array}{cc}
3 & 5 \\
0 & -7 \\
7 & -1
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
3 & 1 & 0 \\
0 & 7 / 11 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & -2 & 1 \\
0 & 11 & -10 \\
0 & 0 & \frac{59}{11}
\end{array}\right]
\end{aligned}
$$

$U x=0$
To solve $A x=0$
I only weed to solve $U_{x}=0$
because of the ones always
$h y=0$
$\left[\begin{array}{lll}1 & 0 & 0 \\ 3 & 1 & 0 \\ 0 & 7 / 11 & 1\end{array}\right]\left[\begin{array}{l}y_{1} \\ y_{2} \\ y_{3}\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$

$$
\left\{\begin{array}{l}
y_{1}=0 \\
3 y_{1}+y_{2}=0 \\
7 / 11 y_{2}+y_{3}=0
\end{array}\right.
$$

$$
\begin{aligned}
& y_{2}=-3 y_{1}=-3 \cdot 0=0 \\
& y_{3}=-\frac{7}{11} y_{2}=-\frac{7}{11} \cdot 0=0
\end{aligned}
$$

(note that $\mathrm{y}=0$ is always a solution to $\mathrm{Ly}=0$) The matrix L always has i's on the diagonal uskich means the solution to $h y=0$ is unique. So $y=0$ is the only solution.
to $h y=0$.

Another way to see that the solution to $\mathrm{Ax}=0$ is given by $\mathrm{Ux}=0$ is directly from the augmented matrix...

Back to the augmented matrix for $A x=0$ after elimination we get this:

Solve is the the same as solving $v x=0$
Some stuff highlighted from the book during the lecture...
1.4 THE MATRIX EQUATION $\mathbf{A x}=\mathbf{b}$

If A is an $m \times n$ matrix, with columns $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}$, and if \mathbf{x} is in \mathbb{R}^{n}, then the product of A and \mathbf{x}, denoted by $A \mathbf{x}$, is the linear combination of the columns of A using the corresponding entries in x as weights; that is,

$$
A \mathbf{x}=\left[\begin{array}{llll}
\mathbf{a}_{1} & \mathbf{a}_{2} & \cdots & \mathbf{a}_{n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]=x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}+\cdots+x_{n} \mathbf{a}_{n}
$$

\qquad
\qquad
\qquad
\qquad

EXAMPLE 3

$$
\left.\begin{array}{rr|r}
3 & 4 & b_{1} \\
2 & -6 & b_{2} \\
2 & -7 & b_{3}
\end{array}\right] \sim \underbrace{1}_{r r c} \begin{array}{rrr}
3 & 4 & b_{1} \\
0 & 14 & 10 \\
0 & 7 & 5 \\
b_{2}+4 b_{1} \\
b_{3}+3 b_{1}
\end{array}] \quad \text { Ariangonganist }
$$

\qquad
n column 4 equals $b_{1}=\frac{1}{2} b_{2}+b_{3}$. The equation $A \mathbf{x}=\mathbf{b}$ is not consistent ruse some choices of \mathbf{b} can make $b_{1}-\frac{1}{2} b_{2}+b_{3}$ nonzero

Row-Vector Rule for Computing $A x$
If the product $A \mathbf{x}$ is defined, then the i th entry in $A \mathbf{x}$ is the sum of the products of corresponding entries from row i of A and from the vector \mathbf{x}.
linear combinations as a consequence...

