Systerns of linear equation

$$
A x=b
$$

Question, given A and b solve for x.

$$
T(x)=6
$$

Question, given I and b solve for x.
But first problem $\$ 1.5 \# 49 \ldots$
Quo ce Suppose the equation $A \mathbf{x}=\mathbf{b}$ is consistent for some given \mathbf{b}, and let \mathbf{p} be a solution. Then the solution set of $A \mathbf{x}=\mathbf{b}$ is the set of all vectors of the form $\mathbf{w}=\mathbf{p}+\mathbf{v}_{h}$, where \mathbf{v}_{h} is any solution of the homogeneous equation $A \mathbf{x}=\mathbf{0}$.
(1). If w is a solution so $A w=b$ then $w=p+V_{n}$ where V_{n} is a solution so $A V_{n}=0$.
(2). If V_{μ} is a solution so $A_{V_{n}}=0$ then $\omega=p+V_{\mu}$ is a solution 20 Aws $=b$.

Why is (1) true..1 first note $A_{p}=b$
Suppose $A w=b$. Subtract so e equation forms the other:

$$
\begin{gathered}
A w=b \\
A p=b \\
A w-A p=0
\end{gathered}
$$

By linearity combine these terms. .

$$
A(w-p)=0
$$

Thus $p \sim w$ is a solution to the homogeneous equation. Then $V_{h}=w-p$ them $A V_{k}=0$.
Thess $w=p+v_{h}$
(2). If V_{h} is a solution so $A v_{n}=0$ then $w=p+r_{n}$ is a solution 20 Aw $=b$.
Substitute it in

$$
A_{N}=A\left(p+v_{h}\right)=A p+A v_{h}=b+0=b
$$

49. Construct a 2×2 matrix A such that the solution set of the equation $A \mathbf{x}=\mathbf{0}$ is the line in \mathbb{R}^{2} through $(4,1)$ and the origin. Then, find a vector \mathbf{b} in \mathbb{R}^{2} such that the solution set of $A \mathbf{x}=\mathbf{b}$ is not a line in \mathbb{R}^{2} parallel to the solution set of $A \mathbf{x}=\mathbf{0}$. Why does this not contradict Theorem 6?

$$
\begin{gathered}
\operatorname{Nul}(A)=\{x: A x=0\}=\left\{\left[\begin{array}{l}
4 \\
1
\end{array}\right] c: c \in \mathbb{R}\right\} \\
\left.\begin{array}{l}
\text { (} \begin{array}{l}
\text { Row } \\
\text { form } \\
\text { fA }
\end{array}
\end{array}\right) \rightarrow\left[\begin{array}{ll}
1 & a \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \quad \begin{array}{l}
x_{1}+a x_{2}=0 \\
x_{1}=-a x_{2} . \\
x=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
-a x_{2} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
-a \\
1
\end{array}\right] x_{2} \text { so } a=-4 \\
\text { For simplicity: } \\
A=\left[\begin{array}{cc}
1 & -4 \\
0 & 0
\end{array}\right]
\end{array} .
\end{gathered}
$$

fut
$b=\left[\begin{array}{l}0 \\ 1\end{array}\right] \quad$ then $\left[\begin{array}{cc}1 & -4 \\ 0 & 0 \\ \text { aero outhe left }\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{l}0 \\ 1\end{array}\right]$ is inconsistent..
No solutions so zero out the left son-zero on the right
No solutions, so art a line at all...
Theorem only applies when $A x=6$ is consistent,

Batt tor z^{2}
Systems of linear equations

$$
A x=b
$$

Question, given A and b solve for x.

$$
T(x)=6
$$

Question, given I and b solve for x.

- does a solutiore exit?
- how many solutions?

Ideally for every b there is an x sud that $A>c=b$ and only one such x such that $A_{x}=b$.

Invertible means there is a tito I correepoudeng that associates exactly one x to every b.

- need a pivot in every row so the system is never inconsistent
- there can be no free variables is there is ray one solution..

If there is a pivot in each row, then there as as many pivots as there are rows.

If there are no free variables, then there are no extra columns.
Thus, there are the same number of columns as rows.
The matrix is square.

How to solve $T(x)=b$ in general...

$$
b=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
0 \\
0
\end{array}\right]+\left[\begin{array}{c}
0 \\
b_{2} \\
0
\end{array}\right]+\left[\begin{array}{c}
0 \\
0 \\
b_{3}
\end{array}\right]
$$

Solve

$$
T(x)=\left[\begin{array}{l}
b_{1} \\
0 \\
0
\end{array}\right], T(y)=\left[\begin{array}{c}
0 \\
b_{2} \\
0
\end{array}\right], T(z)=\left[\begin{array}{l}
0 \\
0 \\
b_{3}
\end{array}\right]
$$

Then

$$
\begin{aligned}
T(x+y+z) & =T(x)+T(y)+T(z) \\
& =\left[\begin{array}{l}
b_{1} \\
0 \\
0
\end{array}\right]+\left[\begin{array}{c}
0 \\
b_{2} \\
0
\end{array}\right]+\left[\begin{array}{c}
0 \\
0 \\
b_{3}
\end{array}\right]=b
\end{aligned}
$$

To solve this

$$
T(x)=\left[\begin{array}{l}
b_{1} \\
0 \\
0
\end{array}\right]
$$

Fiscs $\sin d \omega$

Then
Set $x=b, w$. Check $J(x)=\underset{\text { linear }}{T(b, w)}=b_{1} T(w)=b_{1}\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$

Suppose $T\left(u_{1}\right)=\left[\begin{array}{c}1 \\ 0 \\ 0\end{array}\right], T\left(u_{2}\right)=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right], T\left(u_{3}\right)=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$
Solve for u_{1}, u_{2} and u_{3} in these three problems-.
Then to solve $T(x)=b=\left[\begin{array}{c}b_{1} \\ y_{2} \\ b_{3} \\ b_{3}\end{array}\right]$

$$
\begin{array}{rl}
x & x b_{1} u_{1}+b_{2} u_{2}+b_{3} u_{3}=\left[u_{1}\left|u_{2}\right| u_{3}\right]\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right] \\
T(x) & =T\left(b_{1} u_{1}+b_{2} u_{2}+b_{3} u_{3}\right)=T\left(b_{1} u_{1}\right)+T\left(b_{2} u_{2}\right)+T\left(b_{3} u_{3}\right) \\
& =b_{1} T\left(u_{1}\right)+b_{2} T\left(u_{2}\right)+b_{3} T\left(u_{3}\right) \\
& =b_{1}\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+b_{2}\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]+b_{3}\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]=b .
\end{array}
$$

Use the Augmented matrix to find $u_{1}, u_{2}, u_{3} \ldots$
± 31

$$
\begin{aligned}
& A=\left[\begin{array}{rrr}
1 & 0 & -2 \\
-3 & 1 & 4 \\
2 & -3 & 4
\end{array}\right] \quad \begin{array}{c}
\text { with three right } \\
\text { hoad sides.. }
\end{array} \\
& {\left[\begin{array}{ccc|c|c|c}
1 & 0 & -2 & 1 & 0 \\
-3 & 1 & 4 & 0 & 1 & 0 \\
2 & -3 & 4 & 0 & 0 & 1
\end{array}\right] \quad \begin{array}{l}
r_{2} \& r_{2}+3 r_{1} \\
r_{3} \& r_{3}-2 r_{1} \\
\\
\\
{\left[\begin{array}{ccc|ccc}
1 & 0 & -2 & 1 & 0 & 0 \\
0 & 1 & -2 & 3 & 1 & 0 \\
0 & -3 & 8 & -2 & 0 & 1
\end{array}\right] \quad r_{3} \leftarrow r_{3}+3 r_{2}}
\end{array}}
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{ccc|ccc}
1 & 0 & -2 & 1 & 0 & 0 \\
0 & 1 & -2 & 3 & 1 & 0 \\
0 & 0 & 2 & 7 & 3 & 1
\end{array}\right] \quad \begin{array}{l}
r_{1} \leftarrow r_{1}+r_{3} \\
r_{2} \& r_{2}+r_{3}
\end{array}\left[\begin{array}{ccc|ccc}
1 & 0 & 0 & 8 & 3 & 1 \\
0 & 1 & 0 & 10 & 4 & 1 \\
0 & 0 & 2 & 7 & 3 & 1
\end{array}\right]}
\end{aligned}
$$

$$
\left.\begin{array}{l}
{\left[\begin{array}{ccc|ccc}
1 & 0 & 0 & 8 & 3 & 1 \\
0 & 1 & 0 & 10 & 4 & 1 \\
0 & 0 & 1 & 7 / 2 & 3 / 2 & 1 / 2
\end{array}\right]} \\
u_{1} \\
u_{2}
\end{array} u_{3} . \quad \begin{array}{lll}
8 & 3 & 1 \\
10 & 4 & 1 \\
7 / 2 & 3 / 2 & 1 / 2
\end{array}\right] b \quad \text { solves }\left[\begin{array}{rrr}
1 & 0 & -2 \\
-3 & 1 & 4 \\
2 & -3 & 4
\end{array}\right] x=b .
$$

Cl^{-}

$$
A=\left[\begin{array}{rrr}
1 & 0 & -2 \\
-3 & 1 & 4 \\
2 & -3 & 4
\end{array}\right]
$$

$$
\left[\begin{array}{lll}
8 & 3 & 1 \\
10 & 4 & 1 \\
7 / 2 & 3 / 2 & 1 / 2
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

A-identity matrix
So it worke

