
Last time we ended with the QR method for finding all the eigenvalues
at one and noted that if a real matrix had complex conjugate pairs of
eigenvalues that those correspond to 2x2 blocks on the diagonal of A.



Let's try another computational example to illustrate how this problem
can be solved by using shifts.

Note that in addition to breaking the symmetries that occur with
complex conjugate paris, shifts can also be used to speed convergence
of the QR algorithm.  In this example, we don't worry much about the
speed of convergence, only making the 2x2 blocks go away...

Check that there is at least one complex conjugate eigenvalue pair
for the random matrix.

We got lucky.  This matrix actually has two complex conjugate eigenvalue
pairs.  If you matrix had all real eigenvalues, then create another until
you get one with at least one complex conjugate eigenvalue pair.



Now we try the QR method, just like last Tuesday...

The results are



We now try the shifted algorithm, with a shift given by an
imaginary number to break the complex conjugate symmetry
in the original matrix, and hopefully lead to a result where
all the eigenvalues explicitly appear on the diagonal...

These marks check that all the expected eigenvalues from the built-in
Julia subroutine agree with the diagonal terms.

The lecture on Tuesday ended with the start of an algorithm for
computing the 2 matrix norm...



Recall on Tuesday that we had

For this reason, it is not surprising that finding the maximum in

is related to the eigenvalue-eigenvector problem.

I find our book very nice for making the connection between
Lagrange multipliers, optimization and eigenvalues.



Again from last time...

The spectral theorem is stated in our book without explanation.

Let's now spend a little more time understanding where this theorem
comes from and how to understand it.

We already know that eigenvectors of a symmetric or Hermitian
matrix which correspond to different eigenvalues are orthogonal.

What about linearly independent eigenvectors that correspond to
the exact same eigenvalue?

They might not be orthogonal...but if they are not, then it is possible
to use Gram-Schmidt orthogonalization to construct two different
eigenvectors which span the same space and are othogonal.





In summary...

The above 5 facts (of which we verified 4) form a sketch of the proof
for the spectral theorem...



We now use the spectral basis given by the spectral theorem to
show how to compute the matrix 2 norm...

Therefore, by definition...



Remember that the            here are the eigenvalues of the matrix

Thus...

In other words...


