Starting in Step 3
Absolute error is related
to digits after the decimal point

$$
e_{\mathrm{abs}}=\left|x-x^{*}\right|
$$

decimal places has

$$
e_{\mathrm{abs}} \leq 0.5 \times 10^{-n}
$$

abbreviate as 31] for 3 digits after the decimal point on significant digits has $n=3$

$$
e_{\mathrm{rel}} \leq 5 \times 10^{-n}
$$

Relative error is related to number of significant digits
abbreviate

$$
e_{\mathrm{ecl}} \approx \frac{e_{\mathrm{abs}}}{\left|x^{*}\right|}
$$

$$
35
$$

for three significant digits

$$
n=3
$$

propagation of error:
$x \in \mathbb{R}$ appromation to x called x^{*}

$$
\begin{array}{ll}
y \in \mathbb{R} \rightarrow & y \text { called } y^{k} \\
e_{a b s}(x)=\left|x-x^{*}\right| & e_{a b s}(y)=\left|y-y^{*}\right|
\end{array}
$$

What is the error in $x+y$? by definition exact answer: $z=x+y$
assume I car add x^{*} and y^{*} exactly thun propagated error is

$$
C_{a b_{6}}(x+y)=\left|x+y-\left(x^{*}+y^{*}\right)\right| \leqslant\left|x-x^{*}\right|+\left|y-y^{*}\right| \leqslant C_{\text {cabs }}(x)+\operatorname{Cabs}(y)
$$

Suppose we're working water 3D rounding
3digits after the decimal point.

$$
\begin{array}{ll}
x=1.2345678 & x^{*}=1.235 \\
y=\pi & y^{*}=3.142 \\
e_{a b 9}(x)=|1.2345678-1.235|=|-0.0004322|=.0004322 \leqslant 0.0005
\end{array}
$$

$$
\underbrace{e_{\text {abs }} \leq 0.5 \times 10^{-n}}_{0.5 \times 10^{-3}} \text { Check the estimate on digits ". }
$$

$$
e_{a b s}(y)=\left|y-y^{*}\right|=|\pi-3,142|
$$

$$
=|-.000407 \mathrm{~mm}|=.000407 \leqslant .0005
$$

bound for z-diqits after the decimal...

didn't do any rounding offer adding so didn't generate amy new error...

$$
e_{\text {abs }}(x+y)=(1.2345678+\pi-4.377)
$$

actually equal to
the sum... in this cause
because the errors didn't cancel.

So not accurate
to three decimal places".
idea when reporting the answer only write 3,38
Whide we know is correctly rounded.

By default the computer will print out lots of digits, even if the error estimates indicate that they are not likely to be correct...

Until next time read Example in step 3 on page 12... which goes through two more cases, the second for relative error.

