Ways of measuring errors: $\quad x \in \mathbb{R}$ is the exact value and x^{*} the approx oration
(1) absolute error Cabs $=\left|x-x^{*}\right|$
(2) relative error... $e_{\text {rel }}=\frac{e_{a b s}}{|\pi|}$

Types:

approximation	approximand	type of error
v^{*}	v	initial error
$M\left(v^{*}\right)$	$M(v)$	propagated error generated error
$\frac{M^{*}\left(v^{*}\right)}{M^{*}\left(v^{*}\right)}$	$\frac{M\left(v^{*}\right)}{M(v)}$	gen al cumulative error what we get
what wo want		

M is the function or algorithm we want to apply.
M* is an approxiunction of that function prograunued into a couppution..

$$
\left(4.27 \times 10^{1}\right) \times\left(3.68 \times 10^{1}\right)=\underbrace{15.7136 \times 10^{2}} \rightarrow 1.57 \times 10^{3}
$$

$$
\text { given } 1570=1.57 \times 10^{3}
$$

Because of the rounding the computer doesn't perform multiplication exactly...and so ...
addition of a small to a large \# may have no effect ""

$$
\begin{aligned}
5.18 \times 10^{2}+4.37 \times 10^{-1} & =5.18 \times 10^{2}+0.00437 \times 10^{2} \\
& =5.18437 \times 10^{2} \rightarrow 5.18 \times 10^{2}
\end{aligned}
$$

How much smaller does the have to be for no effect?

Same now be r...
when only 3 significant digits this seems extreme...but can still happen on a real computer...

What is the smallest value of $\varepsilon>0$ such that $1+\varepsilon \neq 1$?

```
julia> 1+0.0001
julia> 1+0.0001==1
false
```

from this I conclucle that ε, whatever it is, nurst be smaller than 0.0001
julia> epsilon $=0.000000001$ still large enough to
$1.0 \mathrm{e}-9$
julia> 1+epsilon==1
false
julia> epsilon $=0.0000000000000000000000000000001$ $1.0 \mathrm{e}-31$
julia> 1+epsilon==1
ε is so small that adding it to 1 does nothing..

Note the value of epsilon just large enough that it does something it called Machine eprilou...
julia> epsilon=1e-16
1.0e-16
julia> 1+epsilon==1
true
julia> epsilon=1e-15
$1.0 \mathrm{e}-15$
julia> 1+epsilon==1
false
\leftarrow too small
indicates about 15 significant digits are available..
also:
the associative law for addition does not always hold.

$$
(a+b)+c=a+(b+c)
$$

If approximate addition... it can happen that

$$
\left(a+^{*} b\right)+^{*} c \neq a+*\left(b+{ }^{*} c\right)
$$

```
julia> a=1.0
1.0
julia> b=2.0
2.0
julia> c=3.0
3.0
julia> (a+b)+c==a+(b+c)
true
```


any fraction that doesn't have a power of 2 in the denominator turns into a repleting binary expansions.
recall for decimal numbers, fractions of the form

$$
\frac{p}{2^{n} 5^{m}} \text { all terminate }
$$

but not the others...

- Step 01
- Step 02
- Step 03, Non-Associativity of Addition, Types of Errors
- Step 04, Realistic Floating_Point Data Types, Rounding Examples
- Step 05, Taylor's Theorem
mad to have for wodnesctay, ."

ere $(a) \leqslant 5 \times 10^{-3} \rightarrow$ propagated error \approx is suse of rel. error

$$
\operatorname{erl}(b) \leqslant 5 \times 10^{-3}
$$

in multiplication

$$
e_{\text {rel }}(a+b) \leqslant 10 \times 10^{-3}=1 \times 10^{-2}
$$

