$$
a x^{2}+b x+c=0
$$

where b is large...

$$
\begin{aligned}
& a=1, \quad b=10,000 \quad c=2 \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
\end{aligned}
$$

$$
x=\frac{\sim 10000 \pm \sqrt{10000^{2}-8}}{2}
$$

alteruation formula note, it $\frac{t}{t}$
rowndled viose nambers comend

$$
\begin{aligned}
& \frac{\sim 2 c}{b+\sqrt{b^{2}-4 a c}}=\frac{-4}{10000+\underbrace{9999.999600}_{10 \text { sigdagits }}} \\
& =\frac{-4}{19999.9996}
\end{aligned}
$$

$$
a=1, \quad b=10,000 \quad c=2
$$

What about 5 sig digit?

$$
\begin{aligned}
& x=\frac{\sim 10000 \pm \sqrt{10000^{2}-8}}{2} \approx \frac{-10000+10000}{2} \simeq 0 \\
& x=\frac{-4}{10000+\sqrt{10000^{2}-9}}=\frac{-4}{20000}=-.0002
\end{aligned}
$$

Note, it's not that solving quadratic equations is so exciting, but that this kind of cancellation that spoils the answer is something to look out for in other problems...
another example... approximation derivatives...

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

Idea,. take h small and approximate

$$
\left.f^{\prime}(x) \approx \frac{f(x+h)-f(x)}{h} \quad \text { for } h=0.000 \theta\right)
$$

That the subtraction of tho nearly equal numbers...

$$
\begin{aligned}
& f(x)=\sqrt{x} \\
& f^{\prime}(x) \approx \frac{\sqrt{x+h}-\sqrt{x}}{h}
\end{aligned}
$$

One can find the derivate in this case exactly so there is no need to approximate. But what if one simply wanted to accurately computer the quantity

- You obtain a residual and thur need to infer the error is...

Another Idea... In this case, we can siouply work with more digits of precision and see if the answer changes...

It seems that 1.00001 does not accurately reflect $1+h$ so instead separate out the h as a separate quantity

These
two now
match to the
digits from the
calculation we suspected to bed more accurate...
dicterent, again less accurate
julia> $1 /($ sqrt $(1+\operatorname{big}(0.00001))+1)$
0.49999875000624996093767118265437091173288046

49729270639816635610802638816400212
different, more accurate
This calculation

$$
\begin{aligned}
& \text { julia> 1/(sqrt(1.00001)+1) } \\
& 0.49999875000625
\end{aligned}
$$

was actually accurate to all the displayed digits. In part beccube of luck, but mostly because there was no cancellation sext caused boss of precision al

