Vector norms and Matrix Norms
Euclidean distance $\|x\|=\sqrt{x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}}$ for $x \in \mathbb{R}^{n}$ from the origin
distance between two points $\|x-y\|$ for $x, y \in \mathbb{R}^{n}$
Dot product $x \in \mathbb{R}^{n} \quad y \in \mathbb{R}^{n}$ them $x \cdot y=\sum_{i=1}^{n} x_{i} y_{i}$.
Note: I can writs the norm in terms of the dot product.

$$
\|x\|=\sqrt{x \cdot x}
$$

Question: Caen you write the dot posduct in term of The norm?
$x \cdot y=$ "Soovething worth norms in it bat no dot products here or $\cos \theta^{\prime \prime}$ "
-polarization identity-
Properties of a Vector Norm:
(1) $\|x\|=0$ if only if $x=0$
(2) $\quad\left\|x^{ \pm} y\right\| \leqslant\|x\|+\|y\| \quad$ triange inequality $x \cdot \frac{\|x-y\|}{\| x=0 \mid \sum_{0} /(y y)} \cdot y$
(3) $\quad\|\alpha x\|=\mid \alpha\|x x\|$ for $\alpha \in \mathbb{R}$

Properties of a Matrix norm:
consequence of the (1)-(3) for a vector norm is

$$
|x \cdot y| \leq\|x\|\|y\|
$$

look a little like (4) for marion
(1) $\|A\|=0$ if only if $A=0$ but it's different...
(2) $\quad\|A+B D \leq\| A\|+\| B \| \quad$ triage inequality
(3) $\quad\|\alpha A\|=\mid \alpha\|A\| \quad$ for $\alpha \in \mathbb{R}$
(4) $\|A B\| \leq\|A\|\|B\|$

$$
\begin{aligned}
& A=x^{\top} \quad B=y \\
& A B=x^{\top} y=x \cdot y
\end{aligned}
$$

Could treat the matrix as a big vector written is some sort of table

$$
\begin{aligned}
& A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{11} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & a_{m 1} & & a_{m 2} \\
a_{m n} & \cdots & a_{m n}
\end{array}\right] \in \mathbb{R}^{m \times n} \\
& \|A\|_{F}=\sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n}\left(a_{i j}\right)^{2}} \begin{array}{l}
\text { properties } \\
\text { ofamatrix } \\
\text { norm... }
\end{array}
\end{aligned}
$$

This ignornes the fact that a matrix represenents a linear, function
$f(x)=A_{x}$ \& the linear function correspoing to $A .$.

$$
\begin{aligned}
g(x) & =B x \\
f \circ g & =A B \leftarrow \text { matrix multiplication }
\end{aligned}
$$

Better to use something tess artificial ... more complicated

$$
\underset{\sim}{\text { matrix }}\|A\|_{2}=\max \{\|A x\|:\|x\| \leq 1\}=\max \{\|A x\|:\|x\|=1\}
$$

also satisfies the properties of a norm: $\|A\|_{2} \leq\|A\|_{F}$
induced matrix norm by the rector norm is the
smallest norm sue that $\|A x\| \leqslant\|A\|\|x\|$ for all $x \in \mathbb{R}^{n}$.
these come
from the
vector norms $\left\{\begin{array}{lll}(1) & \|A\|=0 & \text { if only if } A=0\end{array} \quad\right.$ our its

$$
\begin{aligned}
&\|A B\|=\max \{\|A \underbrace{}_{n}\|:\|x\|=1\} \\
& y=B x \\
&=\max \{\|A y\|: \quad y=B x \text { and }\|x\|=1\}
\end{aligned}
$$

$y=0$ is the min value ... dresn't

$$
=\max \left\{\left\|A \frac{y}{\|y\|}\right\|\|y\|: \quad y \neq b \text { and } y=B x \text { and }\|x\|=1\right\}
$$

$\max \{\|y\|: \quad y \neq 0$ and $y=B x$ and $\|x\|=1\}$

$$
=\max \{\|B x\|:\|x\|=1\}=\|B\|
$$

and
$\max \left\{\left\|A\left[\frac{y}{\|y\|}\right]\right\|: y \neq 0\right.$ and $y=B x$ and $\left.\|x\|=1\right\}$

$$
\begin{aligned}
& w=\frac{y}{\|y\|} \\
& =\max \left\{\|A w\|: w=\frac{y}{\|y\|} \text { and } y \neq 0 \text { and } y=B x \text { and }\|x\|=1\right\} \\
& \text { remove these conditions - max } \\
& \text { gets bigger }
\end{aligned}
$$

$$
\leqslant \max \left\{\left\|A_{w}\right\|: \| \text { to } \|=1\right\}=\|A\|
$$

To compute the induce rectrix norm, weill use the spectral theorem. Please review that for next time.

