| Vector norms and Matrix Norms                                                        |                          |
|--------------------------------------------------------------------------------------|--------------------------|
|                                                                                      |                          |
| Eachidian destance $  x   = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$<br>from the origin | for oce 1Rh              |
|                                                                                      |                          |
| distance between two points $11 \times -y1$ for $x$ , points in $\mathbb{R}^n$       | u E R <sup>n</sup>       |
| · · · · · · · · · · · · · · · · · · ·                                                |                          |
| Dot product xeR" y ER" than x, y = \frac{1}{1-1} \pi_i y                             | i ,                      |
|                                                                                      |                          |
| Note: I can write the norm in terms of the                                           | dot product              |
| $\ \infty\  = \sqrt{x \cdot x}$                                                      |                          |
|                                                                                      |                          |
| Question: Con you write the dot product in term                                      | I The norm?              |
|                                                                                      |                          |
| X,y = Something with norms in it but no dot products here or coso"                   |                          |
| — polalization identity                                                              |                          |
| Properties of a Vector Norm:                                                         |                          |
|                                                                                      | x 112-y11                |
| 0 	   x   = 0 	 if only 	 if 	 x = 0                                                 | 1 / /41)                 |
| ②   xty  ≤   x   +   y   triange inequal                                             | h'ty O                   |
| 3    dx    =   x      x    fm x GR                                                   |                          |
| a vect                                                                               | er norm is               |
| Properties of a Matrix norm:                                                         | x · y   < 11×11   y   y  |
| Let 7                                                                                | t's deferent             |
| 0 IIAII=0 if only if A=0                                                             |                          |
| B   A+B   ≤   IA  +   B    triange inequal                                           | -hi-ty                   |
| 3 11 a A 11 = 1 a/11 A 11 for a EIR                                                  |                          |
| (A)    AB   ≤    A     B   A= x                                                      | T B=y                    |
|                                                                                      | = x <sup>T</sup> y = z.y |
| 7/6                                                                                  | - ~ y - 1.14             |



```
||AB|| = max { ||ABx||: ||x||=1}
                 = max { || Ay ||: y=Bz and ||z|)=1}
                maximum of
                = max 3 || A !| y || || : y = b and y = Bx and ||x|| = 1 }
a product i<mark>s</mark>
less or equal
the product
                      x max 5:11411; y $ b and y=Bx and 1/x1)=1 } < 114/11B1
of maxima
          max 5:1/411: 4 + b and y=Bx and 1/x11=1 }
                 = max & 11 Bx |1: 11x11 = 1 } = [11B]
           and
            max \[ \frac{y}{||y|||| \frac{y}{y} \pm \text{ and } y = Bx \text{ and } ||x|| = 1 \]
               = max \{ || Aw||: W= \frac{y}{||y||} and y to and y = Bx and ||x||=1 \}

remove these conditions - max

\[
\text{2 || Aw||: W= \frac{y}{||y||} and y to and y = Bx and ||x||=1 \}

\[
\text{remove these conditions - max}
               < max & || Aw || : || 10 || = 1 } = || A||
            To compute the induced meetrix norm, we'll use the
```

spectral theorem. Please review that for next time.