

Supposed to be that $\|\underbrace{A x}_{b}\|_{2} \leqslant\|A\|_{g}\|x\|_{2} \leqslant\|A\|_{F}\|x\|_{2}$
Chuck this...

$$
\|b\| \text { Compare }\|A\|\|x\|
$$

Backwards error analysis for the problem $A_{x}=b$.
(1) Find an approximation \hat{x} is souse complicated way where it's difficult to track the errors,
(2) Determine the error in \hat{x} by plugging it in.
(1) How to compute matrix norves and What do they wean... Chapter 2.9.
(2) What about relation errors?

$$
\text { relation error }=\frac{\|\hat{x}-x\|}{\|x\|}
$$

Let x be the exact solution so $A x=b$
\tilde{x} be an approximation with residual $r=A \hat{x}-b$

$$
\begin{aligned}
& \hat{x}-x=A^{-1} b-A^{-1}(b+r)=-A^{-1} r \\
& \|\hat{x}-x\|=\left\|A^{-1} r\right\| \leqslant\left\|A^{-1}\right\|\|r\|
\end{aligned}
$$

For the relative error, divide by $\|x=\|$

$$
\frac{\|\hat{x}-x\|}{\|x\|}=\frac{\left\|A^{-1} r\right\|}{\|x\|} \leqslant \frac{\left\|A^{-1}\right\|\|r\|}{g^{\|x\|}}
$$

Use matrix norms to bound $\frac{1}{\|x\|}$ pere

$$
\begin{aligned}
& A_{x}=b \\
& \|b\|=\|A x\| \leqslant\|A\|\|x\|
\end{aligned}
$$

Therefore

$$
\frac{L}{\|x\|} \leq \frac{\|A\|}{\|b\|}
$$

Thus $\frac{\|\hat{x}-x\|}{\|x\|} \leqslant \frac{\left\|A^{-1}\right\|\|r\|}{\|x\|} \leqslant\|A\|\left\|A^{-1}\right\| \frac{\|r\|}{\|b\|}$

Define $K(A)=\|A\|\left\|A^{4}\right\| \quad$ condition number.. condition number...

Note, Julia dad Not find A^{-1} and then compute $\|\left(A^{-1}\right) \mid$ in order to find the condition number... There are ways to find this directly.."
However, we can verity that $K(A) \approx 13.949 \ldots$ by Finding $\left\|A^{-1}\right\|$ ourselves.

julia> Ainv=inv(A) 3×3 Matrix\{Float64\}: -0.833333		
-0.333333	0.5	
0.833333	0.333333	-1.0
0.833333	-0.333333	0.5

julia> opnorm(Ainv)
1.4567858596437637
julia> kappaA=opnorm(A)*opnorm(Ainv) 13.9498640327588 §9

4
A The rounding is different means
Julia used a different method to find the condition number...

This is not a very boy number so

$$
\frac{\|\hat{x}-x\|}{\|x\|} \leqslant \mid z, g 49 \frac{\|r\|}{\|b\|}
$$

```
julia> n=100
100
julia> x=ones(n);
julia> A=rand(n,n);
julia> b=A*x;
julia> xapp=A\b;
julia> norm(xapp-x)
1.2293458343110473e-12
julia> norm(xapp-x)
1.2293458343110473e-12
```

estimate of relations error
julia> norm(xapp-x)/norm(x) 1.2293458343110474e-13

For example,
absolute error

```
julia> r=A*xapp-b;
julia> cond(A)*norm(r)/norm(b)
2.415860514820197e-12
```

\qquad

$$
\begin{aligned}
& \& \text { actual } \\
& \text { relation } \\
& \text { ever... }
\end{aligned}
$$

julia> cond(A) The power of 10 'sin the 7077.094969786443 condifition number indicceter now many digits in \hat{x} could be expected
if the residual error is computed using double-precision arithmetic, then $\||||/||b||=0$ means only to 15 significant digits. Since these are relative errors, that means plus or minus $0.5 \times 10^{\wedge}(-15)$. This multiplied by the condition number implies the computer can not tell the difference between approximations for x that agree to within $15-3=12$ significant digits.

