Algorithm 28.1. "Pure" QR Algorithm
$A^{(0)}=A$
for $k=1,2, \ldots$

$$
-\left(\begin{array}{l}
Q^{(k)} R^{(k)}=A^{(k-1)} \\
A^{(k)}=R^{(k)} Q^{(k)}
\end{array}\right.
$$

QR factorization of $A^{(k-1)}$
Recombine factors in reverse order

Ak=Matrix (A)
for $k=1$: 100
$Q, R=q r(A k)$
global $A k=R * Q$
end
$A^{0}=A$
$Q^{411} R^{\prime \prime}=A^{(0)}$
$A^{(1)}=R^{14} Q^{\prime \prime \prime}$
$Q^{(20} R^{2}=A^{(1)}$
$A^{(2)}=R^{(2)} Q^{(2)}$

* in Julia the alcorithen coots leks

$$
Q^{(1)} R^{(1)}=A^{(0)} \quad R^{(1)}=\left(Q^{(1)}\right)^{\top} A^{(0)}
$$

Thus $A^{(1)}$ is related to $A^{(0)}$ through a Similarity transformation involving $\left(\mathbb{Q}^{4 \prime}\right)^{\top}$ and therefore $A^{(1)}$ has the same ligan values as $A^{(0)}$.

$$
A^{(2)}=R^{(2)} Q^{(2)}=\left(Q^{(2)}\right)^{\top} A^{(1)} Q^{(2)}
$$

Thus $A^{(2)}$ has the same eigenvalues and liger vectors as $A^{(1)}$ and so as $A^{(0)}$
The amazing thing, as you iterate this, is that $A^{(n)} \rightarrow$ a diagonal matrix (If lucky).
although the algorithm works for general qeatices, thee is a problem with complex eigenvalues coming in conjugate, pairs that have the same wa aqoitude. In that case one needs to break the conjugate symmetric by adding a shift in the imaqiuary directive...
Simpler assume c $A^{\top}=A$ for now to aroid couples.

```
julia> A=rand(4,4)
4\times4 Matrix{Float64}:
\begin{tabular}{llll}
0.0424851 & 0.385023 & 0.364093 & 0.511945 \\
0.835597 & 0.0134645 & 0.263444 & 0.602239 \\
0.15474 & 0.122023 & 0.640464 & 0.913725 \\
0.336913 & 0.771946 & 0.651124 & 0.818216
\end{tabular}
```

julia> A=A+A
4×4 Matrix\{Float64\}:

0.0849703	1.22062	0.518834	0.848859
1.22062	0.026929	0.385468	1.37419
0.518834	0.385468	1.28093	1.56485
0.848859	1.37419	1.56485	1.63643

```
julia> Ak=Matrix(A)
for k=1:100
    Q,R=qr(Ak)
    global Ak=R*Q
end
```


julia> Ak

4×4 Matrix\{Float64\}:

4.00688
-2.0782e-16
8.10313e-16
3.36335e-16
1.16691e-48
-1. 3003
5.02323e-17
-3.38295e-16
1.08858e-79
8.6064e-33
0.640657 6.39867e-17
3.4195e-110
2.86896e-62

The
eis musatues of
a diagonal matrix are just on the diagonal...
julia> lambdas100=diag(Ak)
4-element Vector\{Float64\}:
4.0068787252906
-1.3002967911550671
0.6406566068270437
-0.31797993105343564


```
julia> Ak=Matrix(A)
        for k=1:100
            mu=0.64
            Q,R=qr(Ak-mu*I)
            global Ak=R*Q+mu*I
        end
julia> Ak
4\times4 Matrix{Float64}:
\begin{tabular}{lllr}
4.00688 & \(1.32202 e-15\) & \(8.75357 e-16\) & \(-9.14195 e-17\) \\
\(1.01736 e-23\) & -1.3003 & \(-4.1562 e-16\) & \(1.56173 e-16\) \\
\(9.85888 e-55\) & \(9.36325 e-32\) & -0.31798 & \(-1.19921 e-16\) \\
0.0 & 0.0 & \(-3.09436 e-315\) & 0.640657
\end{tabular}
```

But 164 is not known ahead of time... idea
iteratively improve the shift.

even betterna

Note that the even better converges so fast that the bottom row will be all zeros after only about 12 iterations.

I forgot to show this in class.

```
julia> Ak=Matrix(A)
    for k=1:12
    mu=Ak[4,4]
    Q,R=qr (Ak-mu*I)
    global Ak=R*Q+mu*I
end
```

pen after only 12 , the entice
\rangle lower now ls gers
julia> Ak
4×4 Matrix\{Float64\}:

4.00677	-0.0242769	$2.32056 e-6$	$-7.40061 e-17$
-0.0242769	-1.30019	$-9.23687 e-5$	$-3.34035 \mathrm{e}-16$
$2.32056 \mathrm{e}-6$	$-9.23687 \mathrm{e}-5$	-0.31798	$1.79152 \mathrm{e}-16$
0.0	0.0	0.0	0.640658

