Math 466/666: Homework Assignment 5

This homework uses the vector and matrix 2-norms to explore some properties of matrices, eigenvalues and eigenvectors. Note that you will need to use Julia or similar software for one of these problems.

Given a matrix $A \in \mathbf{R}^{m \times n}$ recall that the spectral matrix norm is defined as

$$||A||_{s} = \max\left\{ ||Ax||_{2} : ||x||_{2} = 1 \right\}$$

where the vector 2-norms $||Ax||_2$ and $||x||_2$ are given by

$$||Ax||_2 = \sqrt{(Ax)^T Ax}$$
 and $||x||_2 = \sqrt{x^T x}$ for $x \in \mathbf{R}^n$.

For convenience of notation we will, henceforth, drop the subscripts and write

 $||A|| = ||A||_s$, $||Ax|| = ||Ax||_2$ and $||x|| = ||x||_2$.

- **1.** Show that $||I|| \ge 1$ where I is the identity operator.
- **2.** Let $A \in \mathbf{R}^{n \times n}$ be invertible. Show that $||A|| ||A^{-1}|| \ge 1$.
- 3. Define

$$A = \begin{bmatrix} 2 & 0 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 & 0 \\ 0 & 0 & 4 & 0 & 0 \end{bmatrix}.$$

Use the definition of the matrix 2-norm to compute ||A|| and $||A^T||$.

4. Let $A \in \mathbf{R}^{7\times 4}$ be a matrix with entries chosen randomly (and independently) from the uniform distribution on the interval [-1, 1]. Use any numerical means you prefer to compute ||A|| and $||A^T||$ for three different samples of the random matrices just described. For example, in Julia you could enter the commands

```
using LinearAlgebra
A=2*rand(7,4).-1;
opnorm(A)
opnorm(A')
```

three times. What relationship between ||A|| and $||A^T||$ do you notice? Please include all program listings and computer output as part of your answer for this question.

5. Given $A \in \mathbf{R}^{m \times n}$ let $x \in \mathbf{R}^n$ and $y \in \mathbf{R}^m$ be unit vectors such that

||Ax|| = ||A|| and $||A^Ty|| = ||A^T||$.

Thus x and y have been chosen to be vectors for which the maximum in the definition of the matrix 2-norm is attained.

(i) Use the Cauchy–Schwarz inequality to prove that

$$||Ax||^2 \le ||A^T Ax||$$
 and $||A^T y||^2 \le ||AA^T y||$.

(ii) By repeated applications of the definition of the norm it follows that

$$||AA^Ty|| \le ||A|| ||A^T||$$
 and $||A^TAx|| \le ||A^T|| ||A||.$

Explain why $||AA^Ty|| = ||A^TAx||$ and finally why $||A|| = ||A^T||$.

6. Let $A \in \mathbf{R}^{m \times n}$ set $B = A^T A$ and define

$$\lambda = \max\left\{ x^T B x : \|x\| = 1 \right\}.$$

- (i) Explain why $\lambda \ge 0$ and show that $||A|| = ||A^T|| = \sqrt{\lambda}$.
- (ii) Choose $\xi \in \mathbf{R}^n$ to be a unit vector such that $\xi^T B \xi = \lambda$ and show that $\|B\xi\| \leq \lambda$.
- (iii) Expand the inner product $(B\xi \lambda\xi)^T (B\xi \lambda\xi)$ and show that $||B\xi \lambda\xi|| = 0$.
- (iv) Is it true or false that ξ must be an eigenvector of B with λ as an eigenvalue? If true explain why; if false provide a counter example.
- 7. [Extra Credit and for Math 666] Let $B \in \mathbb{R}^{n \times n}$ be any symmetric matrix with $B^T = B$ and choose $\xi \in \mathbb{R}^n$ and $\lambda \in \mathbb{R}$ such that $\lambda = \max\{x^T B x : ||x|| = 1\}$ and $\xi^T B \xi = \lambda$.
 - (i) Find an example of a matrix B such that $\lambda < 0$.
 - (ii) Show for any $v \in \mathbf{R}^n$ that $v^T B v \leq \lambda v^T v$.
 - (iii) Set $v = \xi + \epsilon w$ where $w \in \mathbf{R}^n$ and $\epsilon > 0$ and simplify to prove that

$$2w^T (B\xi - \lambda\xi) \le \epsilon (\lambda w^T w - w^T B w).$$

(iv) Now set $w = B\xi - \lambda\xi$. Is it true or false that ξ must be an eigenvector of B with λ as an eigenvalue? If true explain why; if false provide a counter example.