Math 466/666: Homework Assignment 5

This homework uses the vector and matrix 2-norms to explore some properties of matrices, eigenvalues and eigenvectors. Note that you will need to use Julia or similar software for one of these problems.

Given a matrix $A \in \mathbf{R}^{m \times n}$ recall that the spectral matrix norm is defined as

$$
\|A\|_{s}=\max \left\{\|A x\|_{2}:\|x\|_{2}=1\right\}
$$

where the vector 2-norms $\|A x\|_{2}$ and $\|x\|_{2}$ are given by

$$
\|A x\|_{2}=\sqrt{(A x)^{T} A x} \quad \text { and } \quad\|x\|_{2}=\sqrt{x^{T} x} \quad \text { for } \quad x \in \mathbf{R}^{n}
$$

For convenience of notation we will, henceforth, drop the subscripts and write

$$
\|A\|=\|A\|_{s}, \quad\|A x\|=\|A x\|_{2} \quad \text { and } \quad\|x\|=\|x\|_{2}
$$

1. Show that $\|I\| \geq 1$ where I is the identity operator.
2. Let $A \in \mathbf{R}^{n \times n}$ be invertible. Show that $\|A\|\left\|A^{-1}\right\| \geq 1$.
3. Define

$$
A=\left[\begin{array}{lllll}
2 & 0 & 0 & 0 & 0 \\
0 & 3 & 0 & 0 & 0 \\
0 & 0 & 4 & 0 & 0
\end{array}\right]
$$

Use the definition of the matrix 2-norm to compute $\|A\|$ and $\left\|A^{T}\right\|$.
4. Let $A \in \mathbf{R}^{7 \times 4}$ be a matrix with entries chosen randomly (and independently) from the uniform distribution on the interval $[-1,1]$. Use any numerical means you prefer to compute $\|A\|$ and $\left\|A^{T}\right\|$ for three different samples of the random matrices just described. For example, in Julia you could enter the commands

```
using LinearAlgebra
A=2*rand(7,4).-1;
opnorm(A)
opnorm(A')
```

three times. What relationship between $\|A\|$ and $\left\|A^{T}\right\|$ do you notice? Please include all program listings and computer output as part of your answer for this question.
5. Given $A \in \mathbf{R}^{m \times n}$ let $x \in \mathbf{R}^{n}$ and $y \in \mathbf{R}^{m}$ be unit vectors such that

$$
\|A x\|=\|A\| \quad \text { and } \quad\left\|A^{T} y\right\|=\left\|A^{T}\right\| .
$$

Thus x and y have been chosen to be vectors for which the maximum in the definition of the matrix 2 -norm is attained.
(i) Use the Cauchy-Schwarz inequality to prove that

$$
\|A x\|^{2} \leq\left\|A^{T} A x\right\| \quad \text { and } \quad\left\|A^{T} y\right\|^{2} \leq\left\|A A^{T} y\right\|
$$

(ii) By repeated applications of the definition of the norm it follows that

$$
\left\|A A^{T} y\right\| \leq\|A\|\left\|A^{T}\right\| \quad \text { and } \quad\left\|A^{T} A x\right\| \leq\left\|A^{T}\right\|\|A\|
$$

Explain why $\left\|A A^{T} y\right\|=\left\|A^{T} A x\right\|$ and finally why $\|A\|=\left\|A^{T}\right\|$.
6. Let $A \in \mathbf{R}^{m \times n}$ set $B=A^{T} A$ and define

$$
\lambda=\max \left\{x^{T} B x:\|x\|=1\right\} .
$$

(i) Explain why $\lambda \geq 0$ and show that $\|A\|=\left\|A^{T}\right\|=\sqrt{\lambda}$.
(ii) Choose $\xi \in \mathbf{R}^{n}$ to be a unit vector such that $\xi^{T} B \xi=\lambda$ and show that $\|B \xi\| \leq \lambda$.
(iii) Expand the inner product $(B \xi-\lambda \xi)^{T}(B \xi-\lambda \xi)$ and show that $\|B \xi-\lambda \xi\|=0$.
(iv) Is it true or false that ξ must be an eigenvector of B with λ as an eigenvalue? If true explain why; if false provide a counter example.
7. [Extra Credit and for Math 666] Let $B \in \mathbf{R}^{n \times n}$ be any symmetric matrix with $B^{T}=B$ and choose $\xi \in \mathbf{R}^{n}$ and $\lambda \in \mathbf{R}$ such that $\lambda=\max \left\{x^{T} B x:\|x\|=1\right\}$ and $\xi^{T} B \xi=\lambda$.
(i) Find an example of a matrix B such that $\lambda<0$.
(ii) Show for any $v \in \mathbf{R}^{n}$ that $v^{T} B v \leq \lambda v^{T} v$.
(iii) Set $v=\xi+\epsilon w$ where $w \in \mathbf{R}^{n}$ and $\epsilon>0$ and simplify to prove that

$$
2 w^{T}(B \xi-\lambda \xi) \leq \epsilon\left(\lambda w^{T} w-w^{T} B w\right)
$$

(iv) Now set $w=B \xi-\lambda \xi$. Is it true or false that ξ must be an eigenvector of B with λ as an eigenvalue? If true explain why; if false provide a counter example.

