DARLA With determinants...

Definition 2.1 The set of all $m \times n$ matrices with real entries is denoted by $\mathbb{R}^{m \times n}$. A matrix of size $n \times n$ will be called a square matrix of order $n, or simply a matrix of order n. The determinant of a square matrix$ $A \in \mathbb{R}^{n \times n}$ is the real number $\det(A)$ defined as follows:

$$
\det(A) = \sum_{\text{perm}} sign(\nu_1, \nu_2, \dots, \nu_n) a_{1\nu_1} a_{2\nu_2} \dots a_{n\nu_n}.
$$

The summation is over all n! permutations $(\nu_1, \nu_2, \ldots, \nu_n)$ of the integers $1, 2, \ldots, n$, and sign $(\nu_1, \nu_2, \ldots, \nu_n) = +1$ or -1 depending on whether the *n*-tuple $(\nu_1, \nu_2, \ldots, \nu_n)$ is an even or odd permutation of $(1, 2, \ldots, n)$, respectively. An even (odd) permutation is obtained by an even (odd) number of exchanges of two adjacent elements in the array $(1, 2, \ldots, n)$. A matrix $A \in \mathbb{R}^{n \times n}$ is said to be **nonsingular** when its determinant $\det(A)$ is nonzero.

perm(n)= { (y₁,y₁,...,y_n) : (y₁,y₂,...,y_n) ; s a permutation of (y₂,...,y_n) }
\nperm(n) = { (y₁,y₂,...,y_n) : (y₁,y₂,...,y_n) }
\nrem(n) {
\n
$$
2 \times 3
$$

\n 2×4
\n $2 \times$

Recall recursive definition. Vet Cof (aij) be the (n-1) sin-1) determinant of the matrix A $\frac{n}{det A} = \sum_{i=1}^{n} (-1)^{i+j} a_{ij} cos t (a_{ij}) = \sum_{i=1}^{n} (-1)^{i+j} a_{ij} cos t (a_{ij})$
 $\frac{n}{1}$ i=1

Nxn

diterminant some answer

some answer

expansion along a column

expansion along a column

expansion along a now. det $\left[\overline{a}_{\mu}\right]$ = α_{μ} Ix1 determinant Another way to compute the determinant multiplying a A = PLU
pper triangular
boor triangular Matrix on the Mant by a per nuitation motive permutes permutation matrix. 2 (a) the vars 5 (b) the columns det A= det P det L det U of that matinx. A road on diag prod on diag tragular tragular depending whether the porm is even or odd.

Table 56
\n Use Cramers, rule, If $\Delta s t A t O$ from the \n unique solution is\n $\alpha_{i} = \frac{\Delta s t A i(b)}{\Delta u + A}$ \n
\n while A is (b) is the <i>u</i> to the <i>x</i> to the \n while A is (b) is the <i>u</i> to the <i>x</i> to the \n if actually give but not very efficient \n or actually numerically.\n
\n Find the inverse A ⁺ using expressions ... \n $A^{-1} = \frac{1}{\det(A)} \begin{pmatrix} A_{11} & A_{21} & \dots & A_{n1} \\ A_{12} & A_{22} & \dots & A_{n2} \\ \dots & \dots & \dots & \dots \\ A_{1n} & A_{2n} & \dots & A_{nn} \end{pmatrix}$ \n
\n We have A is the change of the differential and a circular \n if the through the differential equation, and accuracy.\n
\n Of course the following of the above formula depend on has \n and the following determinants.\n

<u> 1989 - Johann Barnett, f</u>

3 ways to compute determinants

\n① by the output-derulum,
$$
det(A) = \sum_{\text{perm}} sign(\nu_1, \nu_2, ..., \nu_n)a_{1\nu_1}a_{2\nu_2}...a_{n\nu_n}
$$

\n② $det(A) = \sum_{\text{perm}} sign(\nu_1, \nu_2, ..., \nu_n)a_{1\nu_1}a_{2\nu_2}...a_{n\nu_n}$

\n② $det(A) = \sum_{\text{perm}} (-1)^{\frac{1}{2}} a_{\vec{i}} \cdot \frac{G_{\vec{i}}}{2} (a_{\vec{i}} \cdot a_{\vec{i}})$

\n② $det(A) = \sum_{\text{perm}} (-1)^{\frac{1}{2}} a_{\vec{i}} \cdot \frac{G_{\vec{i}}}{2} (a_{\vec{i}} \cdot a_{\vec{i}})$

\n② $lim_{n \to \infty} \frac{1}{\text{dim}(\text{max})} \cdot \frac{1}{n!} \cdot \frac{1}{\text{dim}(\text{max})} \cdot \frac{1}{\text{dim}(\text{max})} \cdot \frac{1}{\text{dim}(\text{max})} \cdot \frac{1}{\text{dim}(\text{max})}$

\n① $lim_{n \to \infty} \frac{1}{\text{dim}(\text{max})} \cdot \frac{1}{n!} \cdot \frac{1}{\text{dim}(\text{max})} \cdot \frac{1}{\text{dim}(\$

 $p^{-1} = p^{T}$ $A = PLU$ since P is permutation $Ax = b$ PLU_{2} = b $LUx = P^{-1}b$ Solve $Ly = P^{-1}b$ $\frac{y}{\frac{y}{x}}$ for y then some Use= y $Ly = P^{-1}b$ $\frac{6}{x}$ Sine L and U are triangular Han solving these equations can