**Theorem 4.2** Suppose that  $\mathbf{g} = (g_1, \dots, g_n)^T \colon \mathbb{R}^n \to \mathbb{R}^n$  is defined and continuous on a closed set  $D \subset \mathbb{R}^n$ . Let  $\boldsymbol{\xi} \in D$  be a fixed point of  $\boldsymbol{g}$ , and suppose that the first partial derivatives  $\frac{\partial g_i}{\partial x_j}$ ,  $j = 1, \dots, n$ , of  $g_i$ ,  $i = 1, \dots, n$ , are defined and continuous in some (open) neighbourhood  $N(\boldsymbol{\xi}) \subset D$  of  $\boldsymbol{\xi}$ , with

$$\|\mathbf{D}\mathbf{g}(\mathbf{\xi})\|_{\infty} < 1$$
.

Then, there exists  $\varepsilon > 0$  such that  $\mathbf{g}(\bar{B}_{\varepsilon}(\boldsymbol{\xi})) \subset \bar{B}_{\varepsilon}(\boldsymbol{\xi})$ , and the sequence defined by (4.3) converges to  $\boldsymbol{\xi}$  for all  $\boldsymbol{x}^{(0)} \in \bar{B}_{\varepsilon}(\boldsymbol{\xi})$ .

## Newton's Method

$$q(x) = x - (Df(x))^{-1}f(x)$$

$$Dg(x) = Dx - D(Df(z))^{-1}f(x)) = I - D(Df(z))^{-1}f(x)$$

$$\left[D\left(Df(z)\right)^{-1}f(z)\right]_{ij}^{-1} = \frac{\partial}{\partial z_{j}} \sum_{r=1}^{n} K_{ir}(x)f_{r}(x)$$

need to verify this is cont, func. of x.

$$= \sum_{m} \frac{\partial K_{ir}(x)}{\partial x_{j}} f_{r}(x) + \sum_{m} K_{ir}(x) \frac{\partial f_{r}(x)}{\partial x_{j}}$$

$$\frac{\partial}{\partial x_{j}} \left[ D\left( Df(z) \right)^{-1} f(z) \right]_{i} = \sum_{r=1}^{\infty} K_{ir}(\tilde{z}) \frac{\partial f_{r}(\tilde{z})}{\partial x_{j}} = \left[ Df(\tilde{z}) \right]^{-1} Df(\tilde{z}) \right]_{ij}$$

In other words

$$D\left(\left(Df(\xi)\right)^{-1}f(\xi)\right)=I$$

Since Dg(x) is untinuous, in why is it ant.

**Theorem 4.4** Suppose that  $f(\xi) = 0$ , that in some (open) neighbourhood  $N(\xi)$  of  $\xi$ , where f is defined and continuous, all the second-order partial derivatives of f are defined and continuous, and that the Jacobian matrix  $J_f(\xi)$  of f at the point  $\xi$  is nonsingular. Then, the sequence  $(x^{(k)})$  defined by Newton's method (4.18) converges to the solution  $\xi$  provided that  $x^{(0)}$  is sufficiently close to  $\xi$ ; the convergence of the sequence  $(x^{(k)})$  to  $\xi$  is at least quadratic.

Hypothesis katistied mylies there exists

Then, there exists  $\varepsilon > 0$  such that  $\mathbf{g}(\bar{B}_{\varepsilon}(\boldsymbol{\xi})) \subset \bar{B}_{\varepsilon}(\boldsymbol{\xi})$ , and the sequence defined by (4.3) converges to  $\boldsymbol{\xi}$  for all  $\mathbf{x}^{(0)} \in \bar{B}_{\varepsilon}(\boldsymbol{\xi})$ .

## What is the rate of convergence...

**Theorem 4.4** Suppose that  $f(\xi) = 0$ , that in some (open) neighbourhood  $N(\xi)$  of  $\xi$ , where f is defined and continuous, all the second-order partial derivatives of f are defined and continuous, and that the Jacobian matrix  $\mathfrak{D}_{\mathbf{f}}(\xi)$  of f at the point  $\xi$  is nonsingular. Then, the sequence  $(\mathbf{x}^{(k)})$  defined by Newton's method (4.18) converges to the solution  $\xi$  provided that  $\mathbf{x}^{(0)}$  is sufficiently close to  $\xi$ ; the convergence of the sequence  $(\mathbf{x}^{(k)})$  to  $\xi$  is at least quadratic.

Let 
$$e_{k} = x_{k} - \xi$$
.

$$e_{k+1} = 3c_{k+1} - \xi = g(x_k) - \xi = x_k - Df(x_k)^{-1}f(x_k) - \xi$$

$$= e_k - Df(x_k)^{-1}f(x_k)$$

Taylor's theorem in Rn

since 3 15 a root

$$0 = f(\xi) = f(x) + Df(x)(\xi - x) + E_1$$

Thusan Suys

Theorem A.7 (Taylor's Theorem for several variables) Suppose that f is a real-valued function of n real variables,  $n \geq 1$ , such that f and all of its partial derivatives up to and including order k+1 are defined, continuous and bounded in a neighbourhood of the point a in  $\mathbb{R}^n$ . Let A denote an upper bound on the absolute values of all the derivatives of order k+1 in this neighbourhood. Then

$$f(\boldsymbol{a}+\boldsymbol{\eta}) = f(\boldsymbol{a}) + \sum_{r=1}^{k} \frac{U_r(\boldsymbol{a})}{r!} + E_k,$$

where

$$U_r(\boldsymbol{a}) = \left[ \left( \eta_1 \frac{\partial}{\partial x_1} + \dots + \eta_n \frac{\partial}{\partial x_n} \right)^r f \right] (\boldsymbol{a}), \qquad r = 1, \dots, k,$$

and

$$|E_k| \le \frac{1}{(k+1)!} A n^{k+1} \| \boldsymbol{\eta} \|_{\infty}^{k+1}.$$

snee & 15 a root

$$O = f(\xi) = f(x^{(n)}) + Df(x^{(n)})(\xi - x^{(n)}) + E$$

0=f(x")-Df(x")) ek + E1

$$0 = Df(x^{(k)})^{-1}f(x^{(k)}) - e_{\kappa} + Df(x^{(k)})^{-1}E_{1}$$

$$-Df(x^{(k)})^{-1}f(x^{(k)}) = -e_{\kappa} + Df(x^{(k)})^{-1}E_{1}$$

Substitute

$$e_{K+1} = e_{K} - Df(x_{K})^{-1} f(x_{K})$$

$$= e_{K} - e_{K} + Df(x_{K})^{-1} E_{1} =$$

$$\|e_{k+1}\|_{\infty} \leq \|Df(x^{(n)})^{-1}E_1\|_{\infty} \leq \|Df(x^{(n)})^{-1}\|_{\infty}\|E_1\|_{\infty}$$

Since

max 
$$|E_1| \le \frac{1}{\alpha} A n^2 ||\xi - x^k||_{\infty}^2 = \frac{1}{2} A n^2 ||e_k||_{\infty}^2$$
over
all component

$$\| e_{k+1} \|_{\infty} \leq \| \| f(x^{(c)})^{-1} \|_{\omega} \frac{1}{2} A n^{2} \| e_{k} \|_{\omega}^{2}$$

Aft 
$$C = \max \left\{ \| \| f(x^{(n)})^{-1} \|_{\infty} : x \in B_{\overline{\epsilon}}(\xi) \right\}$$

note this maximum exists because  $B_{\overline{\epsilon}}(\xi)$  is

closed and bounded and  $\| f(x^{(n)})^{-1} \|_{\infty}$  for the power  $\mathbb{E}$ .

Since 
$$x^{(k)} \in B_{\xi}(\xi)$$
 then  $\|Df(x^{(k)})^{-1}\|_{\infty} \le C$ .

In summary... The same proof as in the case of one non linear equation, but Taylor's theorem is more complicated.

## Chapter 5: Eigenvalues and Eigenventors

**Theorem 5.1** Suppose that  $A \in \mathbb{R}^{n \times n}$ ; then, the following statements are valid.

Symmetrices ...

- (i) There exist n linearly independent eigenvectors  $\mathbf{x}^{(i)} \in \mathbb{R}^n$  and corresponding eigenvalues  $\lambda_i \in \mathbb{R}$  such that  $A\mathbf{x}^{(i)} = \lambda_i \mathbf{x}^{(i)}$  for all i = 1, 2, ..., n.
- (ii) The function

$$\lambda \mapsto \det(A - \lambda I)$$
 (5.2)

is a polynomial of degree n with leading term  $(-1)^n \lambda^n$ , called the **characteristic polynomial of** A. The eigenvalues of A are the zeros of the characteristic polynomial.

(iii) If the eigenvalues  $\lambda_i$  and  $\lambda_j$  of A are distinct, then the corresponding eigenvectors  $\mathbf{x}^{(i)}$  and  $\mathbf{x}^{(j)}$  are orthogonal in  $\mathbb{R}^n$ , i.e.,

$$\boldsymbol{x}^{(i)\mathrm{T}}\boldsymbol{x}^{(j)} = 0 \quad \text{if } \lambda_i \neq \lambda_j, \quad i, j \in \{1, 2, \dots, n\}.$$

- (iv) If λ<sub>i</sub> is a root of multiplicity m of (5.2), then there is a linear subspace in R<sup>n</sup> of dimension m, spanned by m mutually orthogonal eigenvectors associated with the eigenvalue λ<sub>i</sub>.
- (v) Suppose that each of the eigenvectors  $\mathbf{x}^{(i)}$  of A is normalised, in other words,  $\mathbf{x}^{(i)\mathrm{T}}\mathbf{x}^{(i)}=1$  for  $i=1,2,\ldots,n$ , and let X denote the square matrix whose columns are the normalised (orthogonal) eigenvectors; then, the matrix  $\Lambda=X^{\mathrm{T}}AX$  is diagonal, and the diagonal elements of  $\Lambda$  are the eigenvalues of A.
- (vi) Let  $Q \in \mathbb{R}^{n \times n}$  be an orthogonal matrix and define  $B \in \mathbb{R}^{n \times n}_{sym}$  by  $B = Q^{T}AQ$ ; then,  $det(B \lambda I) = det(A \lambda I)$  for each  $\lambda \in \mathbb{R}$ . The eigenvalues of B are the same as the eigenvalues of A, and the eigenvectors of B are the vectors  $Q^{T}\mathbf{x}^{(i)}$ , i = 1, 2, ..., n.
- (vii) Any vector  $\mathbf{v} \in \mathbb{R}^n$  can be expressed as a linear combination of the (ortho)normalised eigenvectors  $\mathbf{x}^{(i)}$ , i = 1, 2, ..., n, of A, i.e.,

$$\mathbf{v} = \sum_{i=1}^{n} \alpha_i \mathbf{x}^{(i)}, \quad \alpha_i = \mathbf{x}^{(i)\mathrm{T}} \mathbf{v}.$$

(viii) The trace of A,  $\operatorname{Trace}(A) = \sum_{i=1}^{n} a_{ii}$ , is equal to the sum of the eigenvalues of A.



Olgorithm for finding eigenvalues and eigenvector.

Recall power method, B=AA

y K+1 = Bxk = YK+1 / KyK+1 | already know one way to hind the largest eigenvalue.

largest ligenvalue  $2 \text{ y}_{k+1} \cdot x_k$  eigenvector  $2 \text{ x}_k$ 

This worked in part because all eigenvalues of AA one positive. If they wen't then there could be two different eigenvalues  $\lambda_1 \neq \lambda_2$  such that  $|\lambda_1| = |\lambda_2|$  and in this case the method doesn't always rock.