~ Theorem 4.2 Suppose that g = (g1,...,9,)1: R® — R" is defined
~ and continuous on a closed set D C R". Let & € D be a fized point of
— g, and suppose that the first partial derivatives # j=1,....n, of g;,
——4+=1,...,n, are defined and continuous in some (open) nezghbourhood —

— N(&) C D of &, with .

o 1Pg (&)l < 1. o
" Then, there exists ¢ > 0 such that g(B:(&)) C B.(&), and the sequence o
defined by (4.3) converges to & for all (©) € B.(€).
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Theorem 4.4 Suppose that f(§) = 0, that in some (open) neighbour-
hood N (&) of &, where [ is defined and continuous, all the second-order
partial-derivatives-of f ~arexdefined-and continuous, and that the Jaco-
bian matriz J¢(&) of f at the point § is nonsingular. Then, the sequence
(x®)) defined by Newton’s method (4.18) converges to the solution & pro-
vided that () is sufficiently close to &; the convergence of the sequence
(x®)) to & is at least quadratic.
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Then, there exists € > 0 such that g(B.(€)) C B.(€), and the sequence
defined by (4.3) converges to & for all €9 € B.(§).
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~— Theorem 4.4 Suppose that f(&) = 0, that in some (open) neighbour-
- hood N(§) of §, where f is defined and contipuous, all the second-order
— partial deriwatives of f are defined and continuous, and that the Jaco-

 bian matriz UF(€) of f at the point & is nonsingular. Then, the sequence

(™) defined by Newton’s method (4.18) converges to the solution & pro-

vided that ') is sufficiently close to &; the convergence of the sequence
(™) to & is at least quadratic.
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Theorem A.7 (Taylor’s Theorem for several variables) Suppose

that f 1s a real-valued function of n real variables, n > 1, such that f and

all of its partial derivatives up to and including order k + 1 are defined, ——
continuous and bounded in a neighbourhood of the point a in R™. Let
A denote an upper bound on the absolute values of all the derivatives of
order k + 1 in this neighbourhood. Then

f(a+n
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Theorem 5.1 Suppose that A € R">"; then, the following statements

svim

are valid.

(i)

(ii)

(iii)

(iv)

(vi)

(vii)

(viii)

There exist n linearly independent eigenvectors ') € R™ and
corresponding eigenvalues \; € R such that Az'") = \;z2'") for all
i=1,2,...,n.

The function

A det(A — M) (5.2)

is a polynomial of degree n with leading term (—1)" A", called the
characteristic polynomial of A. The eigenvalues of A are the
zeros of the characteristic polynomial.

If the eigenvalues A\; and A; of A are distinct, then the corre-
sponding eigenvectors ¥ and ) are orthogonal in R™, i.e.,

VT2 =0 dif A # N, i,j €{1,2,...,n}.

If i is a root of multiplicity m of (5.2), then there is a linear sub-
space in R™ of dimension m, spanned by m mutually orthogonal
eigenvectors associated with the eigenvalue A;.
Suppose that each of the eigenvectors ') of A is normalised,
in other words, xV Tz =1 fori =1,2,...,n, and let X denote
the square matriz whose columns are the normalised (orthogonal)
eigenvectors; then, the matriz A = XTAX is diagonal, and the
diagonal elements of A are the eigenvalues of A.
Let Q € R™*™ be an orthogonal matriz and define B € R\ by
B = QVAQ; then, det(B — M) = det(A — XI) for each A€ R.
The eigenvalues of B are the same as the eigenvalues of A, and
the eigenvectors of B are the vectors Q Tz, i =1,2,... n.
Any vector v € R"™ can be expressed as a linear combination of
the (ortho)normalised eigenvectors % i=1,2,....n, of A, t.e.,

T

v = Z(riw("), ; = a:(i)Tv .

i=1
The trace of A, Trace(A) = 3.1, a;, is equal to the sum of the
eigenvalues of A.
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