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Definition 5.5 Suppose that n > 2 and A € C"*". The Gerschgorin

discs D;, i = 1,2,..., n, of the matriz A are defined as the closed .
circular regions dB(S A CU.'“'( é\&M
D;={z€C: |z — ai;| < R;} (5.17)

in the complex plane, where

R = |a| (5.18)
j=1

Theorem 5.4 (Gerschgorin’s Theorem) Let n > 2 and A € C"*".
All eigenvalues of the matriz A lie in the region D = |J"_, D;, where D;,
i=1,2,...,n, are the Gerschgorin discs of A defined by (5.17), (5.18).
|

Theorem 5.5 (Gerschgorin’s Second Theorem) Let n > 2. Sup-
pose that 1 < p < n — 1 and that the Gerschgorin discs of the matrix
A € C™™ can be divided into two disjoint subsets DP) and D9, con-
taining p and q = n — p discs respectively. Then, the union of the discs
in DP) contains p of the eigenvalues, and the union of the discs in D9
contains n — p eigenvalues. In particular, if one disc is disjoint from
all the others, it contains exactly one eigenvalue, and if all the discs are
disjoint then each disc contains exactly one eigenvalue.
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