1. For $A \in \mathbb{R}^{n \times n}$ the matrix norm induced by the ℓ^1 vector norm is

$$
||A||_1 = \max \Big\{ \sum_{i=1}^n |a_{ij}| : j = 1, \dots, n \Big\}
$$

and the matrix norm induced by the ℓ^{∞} vector norm is

$$
||A||_{\infty} = \max \Big\{ \sum_{j=1}^{n} |a_{ij}| : i = 1, ..., n \Big\}.
$$

Suppose

$$
A = \begin{bmatrix} 2 & -2 & 0 & -2 \\ 3 & -1 & -2 & -4 \\ -4 & -4 & -4 & 2 \\ -1 & -1 & -2 & 2 \end{bmatrix}.
$$

(i) Find *∥A∥*¹

(ii) Find *∥A∥[∞]*

2. For $v \in \mathbb{R}^n$ show that $||v||_2 \leq \sqrt{2}$ \overline{n} $||n||_{\infty}$.

3. Suppose that the function $g: \mathbb{R}^n \to \mathbb{R}^n$ is a contraction in the ∞ -norm on the closed subset *D* of \mathbb{R}^n . Thus, for some $L \in (0,1)$ holds

$$
||g(x) - g(y)||_{\infty} \le L||x - y||_{\infty} \quad \text{for all} \quad x, y \in D.
$$

Use the fact that

$$
||g(x) - g(y)||_p \le n^{1/p} ||g(x) - g(y)||_{\infty}
$$

to show *g* is a contraction in the *p*-norm provided $L < n^{-1/p}$.

4. Suppose $f: \mathbb{R} \to \mathbb{R}$ has $n + 1$ continuous derivatives. Prove that

$$
f(x) = \sum_{k=0^n} \frac{(x - x_0)^k}{k!} f^{(k)}(x_0) + R_n(x)
$$

where

$$
R_n(x) = \frac{(x - x_0)^{n+1}}{(n+1)!} f^{(n+1)}(c)
$$

for some c between x and x_0 .

5. Please fill in the missing blanks to complete the following definition.

The Matrix Norm. Given any norm *∥·∥* on the space **R***ⁿ* of *n*-dimensional vectors with real entries, the subordinate matrix norm on the space $\mathbb{R}^{n \times n}$ of $n \times n$ matrices is defined by

6. State the bisection method for approximating a solution to $f(x) = 0$.

7. What is partial pivoting, when is it used and what is the purpose of partial pivoting?

8. Suppose $A = PLU$ where

$$
P = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}, \qquad L = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 7 & -1 & 1 \end{bmatrix} \quad \text{and} \quad U = \begin{bmatrix} 3 & 1 & -5 \\ 0 & -2 & 8 \\ 0 & 0 & -7 \end{bmatrix}.
$$

Use this factorization to find $det(A)$.

9. Let $R^{(pq)}(\varphi)$ be the matrix whose elements r_{ij} are the same as the identity except for the four elements

Let $A \in \mathbb{R}^{n \times n}$ be symmetric. Set $A^{(0)} = A$ and consider the iteration

$$
A^{(k+1)} = R^{(pq)}(\varphi_k)^T A^{(k)} R^{(pq)}(\varphi_k)
$$

with *p* and *q* chosen such that $|A_{pq}^{(k)}| = \max\left\{ |A_{ij}^{(k)}| : i \neq j \right\}$ and φ_k such that

$$
(A_{pp}^{(k)} - A_{qq}^{(k)}) \cos \varphi_k \sin \varphi_k + A_{pq}^{(k)} (\cos^2 \varphi_k - \sin^2 \varphi_k) = 0.
$$

What is the idea behind this iteration and to what will $A^{(k)}$ converge?

10. Let $H = I - 2vv^T$ where $v \in \mathbb{R}^n$ is a unit vector. (i) Show that $H^T = H$.

(ii) Show that $H^2 = I$.

11. Let $A \in \mathbb{R}^3$ and suppose the eigenvalues of the matrix $B = A^T A$ are given by $\lambda_1 = 1$, $\lambda_2 = 7$ and $\lambda_3 = 9$. Use this information to find $||A||_2$.

12. Recall the Gerschgorin theory given by

Theorem. Let $n \geq 2$ and $A \in \mathbb{C}^{n \times n}$. All eigenvalues of the matrix *A* lie in the region $D = \bigcup_{i=1}^{n} D_i$, where

$$
D_i = \{ z \in \mathbf{C} : |z - a_{ii}| \le R_i \} \qquad \text{where} \qquad R_i = \sum_{j \ne i} |a_{ij}|
$$

are the Gerschgorin disks.

Theorem. Suppose $1 \leq p \leq n-1$ and the Gerschgorin discs of the matrix *A* can be divided into two disjoint subsets $D^{(p)}$ and $D^{(q)}$, containing *p* and $q = n - p$ discs respectively. Then, the union of the disks in $D^{(p)}$ contains p of the eigenvalues, and the union of the discs in $D^{(q)}$ contains $n - p$ eigenvalues. In particular, if one disc is disjoint from all the others, it contains exactly one eigenvalue, and if all the discs are disjoint then each disc contains exactly one eigenvalue.

(i) Let

$$
A = \begin{bmatrix} 1.0 & 0.1 & 0.3 & 0.1 \\ -0.1 & 2.0 & -0.2 & 0.0 \\ 0.4 & -0.1 & 5.0 & -0.1 \\ -0.2 & 0.2 & -0.2 & 8.0 \end{bmatrix}
$$

Find the four Gerschgorin disks D_i and their radii R_i for $i = 1, \ldots, 4$.

(ii) Which of the Gerschgorin disks are disjoint from all the others?

(iii) Let λ_i be the eigenvalues of *A* ordered such that $\lambda_1 \leq \lambda_2 \leq \lambda_3 \leq \lambda_4$. Since *A* is approximately diagonal it seems reasonable to suppose $\lambda_i \approx a_{ii}$. Use the Gerschgorin theory to find a bound ρ such that $|\lambda_4 - a_{44}| \leq \rho$.

13. Suppose $A = QR$ where

$$
Q = \begin{bmatrix} \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ \frac{2}{\sqrt{6}} & -\frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \end{bmatrix} \qquad \text{and} \qquad R = \begin{bmatrix} \sqrt{6} & \sqrt{2} \\ 0 & 1 \end{bmatrix}.
$$

Explain how to use this factorization to minimize $||Ax - b||$ and then find the minimizing value of *x* corresponding to $b = (2, 0, 1)$.