
Computer Lab 02 Newton’s Method

The computer labs provide computational experience related to the ana-
lytic theory presented in the lectures. The main tool for these exercises is a
programming language called Julia designed for the implementation of nu-
merical algorithms that combines the compiled efficiency of C and Fortran
with the interactive and notational convenience of Matlab and Python.

In science and engineering an important goal is to become a skilled
practitioner by doing it yourself. To this end the computers in the lab have
been provisioned with a Linux programming environment similar to what
is deployed on the university high-performance cluster, all other supercom-
puters worldwide and for most cloud computing. To access Linux please
restart the computer using the usb network boot key for this class.

Rather than using the lab equipment it is also possible to freely install
Julia on your personal laptop. While using your own computer goes along
well with doing it yourself, I will unfortunately be unable to help with any
technical problems that might crop up in that case. Even so, I’d recommend
trying to install Julia at home, if only to avoid coming in after hours to
complete the homework. You may also use your laptop in the lab.

Note that it is possible to forgo Julia and perform all your computations
using a different programming language. Although I would be happy to
grade assignments completed using such alternatives, my opinion is Julia
makes numerical methods much easier than a general-purpose programming
language. I am also able to provide more help with Julia.

Newton’s Method

The first computer lab introduced Julia by using it as a desktop calculator.
The next activity is to approximate solutions to f(x) = 0 with Newton’s
method and verify the quadratic rate of convergence numerically. Note that

• Newton’s method is one of the most important algorithms used in
computation due to its fast rate of convergence.

• As it is covered in an introductory calculus course, the familiarity makes
a foundation on which to build analysis.

Newton’s method described algorithmically is the iterative scheme

xn+1 = g(xn) where g(x) = x− f(x)

f ′(x)
.

1

Computer Lab 02 Newton’s Method

Here x0 is an initial guess for the solution and each xn is an improved
approximation of that solution.

The goal today is for you to write a program that approximates the
solution near x0 = 1 to the equation

cosx = 2x (3.1)

using Newton’s method. Setting f(x) = cosx − 2x converts the task of
solving this equation into finding the root ξ such that f(ξ) = 0.

How to find the roots of f will now be described in step-by-step details.
We focus on a similar example so as to not so spoil the fun of doing the
problem yourself.

Suppose then instead of (3.1) that one seeks to approximate the solu-
tion near x0 = 2 to the equation

5xe−x = 1 (3.2)

using Newton’s method. Note that the roots of the function

f(x) = 5xe−x − 1

correspond to the solutions of equation (3.2).
One of the complications of Newton’s method is that the algorithm re-

quires the derivative f ′(x) to perform the iterations. While it might appear
necessary to find the derivative by hand, in the 1960s computer algebra sys-
tems began to appear that were capable of finding such derivatives using
the rules of calculus.

Such computer algebra systems are now widely available. One is even
built into Julia. For this lab, however, we simply find f ′ by hand as

f ′(x) = 5e−x − 5xe−x = 5(1− x)e−x.

Open the Julia repl and enter

f(x)=5*x*exp(-x)-1
df(x)=5*(1-x)*exp(-x)
x0=2
g(x)=x-f(x)/df(x)

2

Computer Lab 02 Newton’s Method

At this point the screen should look like

julia> f(x)=5*x*exp(-x)-1
f (generic function with 1 method)

julia> df(x)=5*(1-x)*exp(-x)
df (generic function with 1 method)

julia> g(x)=x-f(x)/df(x)
g (generic function with 1 method)

julia> x0=2
2

To test Newton’s method set xn=x0 and compute

xn=g(xn)

as many times as needed. In the repl this looks like

julia> xn=x0
2

julia> xn=g(xn)
2.5221887802138703

julia> xn=g(xn)
2.5425691666820014

julia> xn=g(xn)
2.5426413568569757

julia> xn=g(xn)
2.5426413577735265

julia> xn=g(xn)
2.5426413577735265

3

Computer Lab 02 Newton’s Method

Note that the up-arrow key followed by ⟨enter⟩ was repeatedly pressed to
iterate the recurrence. As the value didn’t change after the last iteration
shown we conclude the method has converged to all available digits.

Checking the Order of Convergence

While it only took a few iterations to find a good approximation, was the
order of convergence really quadratic?

Quadratic convergence means for some µ > 0 that

lim
n→∞

|xn+1 − ξ|
|xn − ξ|2

= µ

The difficulty is we don’t know what ξ is. Since

|xn+1 − ξ| − |xn+2 − ξ| ≤ |xn+1 − xn+2| ≤ |xn+1 − ξ|+ |xn+2 − ξ|

and

|xn − ξ| − |xn+1 − ξ| ≤ |xn − xn+1| ≤ |xn − ξ|+ |xn+1 − ξ|,

it follows that

|xn+1 − ξ| − |xn+2 − ξ|
(|xn − ξ|+ |xn+1 − ξ|)2

≤ |xn+1 − xn+2|
|xn − xn+1|2

≤ |xn+1 − ξ|+ |xn+2 − ξ|
(|xn − ξ| − |xn+1 − ξ|)2

.

Under the assumption |xn+1 − ξ| ≈ µ|xn − ξ|2 we have

lim
n→∞

|xn+1 − ξ| − |xn+2 − ξ|
(|xn − ξ|+ |xn+1 − ξ|)2

= lim
n→∞

|xn+1 − ξ| − µ|xn+1 − ξ|2

(|xn − ξ|+ µ|xn − ξ|2)2

= lim
n→∞

|xn+1 − ξ|
|xn − ξ|2

lim
n→∞

1− µ|xn+1 − ξ|
(1 + µ|xn − ξ|)2

= µ · 1 = µ

and similarly

lim
n→∞

|xn+1 − ξ|+ |xn+2 − ξ|
(|xn − ξ| − |xn+1 − ξ|)2

= µ.

Therefore, by the squeezing theorem

lim
n→∞

|xn+1 − xn+2|
|xn − xn+1|2

= µ

4

Computer Lab 02 Newton’s Method

and for large enough n we have

|xn+1 − xn+2| ≈ µ|xn − xn+1|2.

Consequently

log |xn+1 − xn+2| ≈ 2 log |xn − xn+1|+ log µ.

and so
log |xn+1 − xn+2| − log µ

log |xn − xn+1|
≈ 2.

Since |xn+1 − xn+2| → 0 then log |xn+1 − xn+2| → −∞ which means log µ
is negligible when n is large. Thus, for n large enough it follows that

log |xn+1 − xn+2|
log |xn − xn+1|

≈ 2.

We now compute this ratio using arbitrary precision arithmetic as a consis-
tency check for the quadratic convergence of Newton’s method.

Arbitrary Precision with Julia

Julia has a built-in data type called BigFloat which can be used to compute
floating point numbers with thousands of digits. The default precision for
BigFloat is 256 bits. That corresponds to approximately

256 log(2)/ log(10) ≈ 77

decimal digits of precision. We’ll set the precision to 4096 bits in order to
examine the convergence over more iterations of Newton’s method.

The function call setprecision(4096) sets the precision of the builtin
BigFloat data type in Julia to 4096 bits. After this, specifying the start-
ing value for x0 with x0=big"2.0" causes the rest of the calculation to be
performed using BigFloat numbers.

The following script newtbig.jl uses 4096-bit arithmetic to compute

log εn+1

log εn
where εn = |xn − xn+1|

5

Computer Lab 02 Newton’s Method

for n = 0, 1, 2, 3, . . . , 8.

1 setprecision(4096)
2 f(x)=5*x*exp(-x)-1
3 df(x)=5*(1-x)*exp(-x)
4 x0=big"2.0"
5

6 g(x)=x-f(x)/df(x)
7

8 xn=x0
9 xn1=g(xn)

10 en=abs(xn-xn1)
11 for n=1:9
12 global xn,xn1,en
13 xn=xn1
14 xn1=g(xn)
15 en0=en
16 en=abs(xn-xn1)
17 println("n=$(n-1) log(e(n+1))/log(e(n))=",
18 Float64(log(en)/log(en0)))
19 end

The output should look like

julia> include("newtbig.jl")
n=0 log(e(n+1))/log(e(n))=5.992036085626963
n=1 log(e(n+1))/log(e(n))=2.4494631630193666
n=2 log(e(n+1))/log(e(n))=2.18225176911099
n=3 log(e(n+1))/log(e(n))=2.083513514614094
n=4 log(e(n+1))/log(e(n))=2.0400830203421143
n=5 log(e(n+1))/log(e(n))=2.019647739794135
n=6 log(e(n+1))/log(e(n))=2.0097283003402056
n=7 log(e(n+1))/log(e(n))=2.004840604741725
n=8 log(e(n+1))/log(e(n))=2.002414458650865

Observe that the ratio is close to 2 as expected.

6

Computer Lab 02 Newton’s Method

Submitting Your Work

For this lab two things should be uploaded for grading:

• A program that computes log εn+1/ log εn when n = 0, 1, 2, . . . , 8 for
the sequence xn obtained by Newton’s method corresponding to the
solution of f(x) = cosx− 2x starting with x0 = 1.

• The output from running that program.

The main thing needed to finish this lab is change the definitions of lines 2,
3 and 4 in the previous script. You may test your program by running it as

$ julia newtbig.jl

If everything looks fine place the output in newtbig.out and finally convert
everything to Postscript format. Check the Postscript file using the evince
previewer. A transcript of the commands needed to prepare and preview
the program and output for submission look like

$ julia newtbig.jl >newtbig.out
$ j2pdf -o submit02.pdf newtbig.jl newtbig.out
$ evince submit02.pdf &

Upload submit02.pdf for grading to the course management system.
Please reboot the lab computer into Microsoft Windows before leaving.

7

