
Computer Lab 03 Solving Linear Systems

In science and engineering an important goal is to become a skilled prac-
titioner by doing it yourself. The computer labs provide computational
experience related to the analytic theory presented in the lectures.

Solving Linear Systems

This lab is about solving systems of linear equations of the form

Ax = b where A ∈ Rn×n, b ∈ Rn and x ∈ Rn.

Note that A is square and is likely to have an inverse if chosen randomly.
A large amount of scientific and engineering work done by computers

amounts to various kinds of linear algebra. For example, systems of linear
equations come from the discretization of partial differential equations and
are also used in machine learning. Even finding the roots of a polynomial—
something that would seem an ideal application for Newton’s method—is
often better treated as an eigenvalue problem.

The Julia programming language was conceived at MIT in 2009 with
numerical computing in mind. The goal was to combine the interactive envi-
ronment and high-level abstractions available in interpreted languages such
as Matlab and Python with the compiled performance of C and Fortran.
Ideally this would alleviate the need for practitioners of numerical methods
to know multiple programming languages. All of the experimentation, de-
velopment, high-performance computing and scientific visualization needed
to solve a problem could conveniently be done in Julia.

While creating yet another programming language seems unlikely to
remedy the problem that there are already too many, it’s difficult to retrofit
the new technologies that make Julia possible onto the designs of older
programming language. The way dynamic typing works in Python makes
that language difficult to compile into fast machine code. As a consequence,
just-in-time Python compilers such as Numba and ahead-of-time compilers
such as Cython work only with a subset of Python. On the other hand,
trying to add an interactive read-evaluate-print loop to Fortran or C also
has problems. The syntax of those languages require so much formalism
and details that they are inconvenient to use interactively.

Clearly it is possible to make Python just-in-time compiled by removing
features or Fortran interactive by simplifying its syntax; however, the results
are likely to include historical compromises that detract from the goal of

1

Computer Lab 03 Solving Linear Systems

combining the best of both. Julia was designed from the beginning to be
convenient to use interactively subject to the constraint that just-in-time
compilation lead to fast machine code.

In achieving the above two goals, Julia has achieved one more: The
high-level mathematical abstractions and notation—the built-in operators
for vectors and matrices—allow cross-platform performance portability to
different types of computing hardware. See, for example,

https://www.nextplatform.com/2022/01/05/strong-showing-for-julia-across-
hpc-platforms/

and the benchmarking report at

https://ieeexplore.ieee.org/abstract/document/9652798

Note that downloading the pdf file from the above link may require authen-
tication through the university library. You are encouraged to download and
read these links outside of class.

The notation used by Julia for manipulating vectors and matrices is
inspired by Matlab. However, in order to keep Julia’s syntax as logical as
possible there are notable differences.

https://docs.julialang.org/en/v1/manual/noteworthy-differences/

Unless you are familiar with Matlab and want to see a summary of the
differences with Julia, there is no need to click the above link.

Now start at the beginning with Julia. The left-division operator \ is
used for solving Ax = b. To solve the matrix equation 1 0 1

0 1 0
3 2 1

x1

x2

x3

 =

 1
2
3

using Julia as an interactive calculator, type

julia> A=[1 0 1; 0 1 0; 3 2 1]
3×3 Matrix{Int64}:
1 0 1
0 1 0
3 2 1

2

https://www.nextplatform.com/2022/01/05/strong-showing-for-julia-across-hpc-platforms/
https://ieeexplore.ieee.org/abstract/document/9652798
https://docs.julialang.org/en/v1/manual/noteworthy-differences/

Computer Lab 03 Solving Linear Systems

julia> b=[1,2,3]
3-element Vector{Int64}:
1
2
3

julia> x=A\b
3-element Vector{Float64}:
-1.0
2.0
1.9999999999999998

Note the elements in each row of the matrix A are separated by spaces and
the rows are separated by semicolons. The elements in the vector b are
separated by commas. Finally, x is the approximate solution to Ax = b
obtained from the A\b Julia command.

The Linpack Benchmark

When A is square and invertible, Julia uses Gaussian elimination with par-
tial pivoting to compute x. This is first algorithm taught in an introduc-
tory linear algebra class; however, there is one difference. When performing
Gaussian elimination by hand, one generally swaps rows only when the el-
ement in the pivot position is zero. When a computer performs the same
task it swaps rows each time it chooses a pivot so the magnitude of that
pivot is as large as possible. This helps reduce rounding error.

Since 1993 the most powerful computers devoted to science in the world
have been ranked by how fast they solve Ax = b as follows: Given a matrix
of size n × n, Gaussian elimination requires (2/3)n3 + 2n2 floating-point
operations to arrive at a solution. Divide this quantity by the time Tn in
seconds it takes a particular computer to solve the problem using double-
precision 64-bit arithmetic. The quotient is a speed defined as

flops =
1

Tn

(2
3
n3 + 2n2

)
.

The fastest computers today perform 1× 1018 flops or floating-point
operations per second. This is called exascale supercomputing. Rankings
for the fastest 500 supercomputers in the world are listed at

3

Computer Lab 03 Solving Linear Systems

https://www.top500.org/lists/top500/

Generally n is taken as large as memory allows. For example, n = 24 440 832
for the Frontier system at Oak Ridge National Laboratory. For an n that
large it takes 4 450 636 gb ram to even store A. Since the lab computers
each have about 16 gb ram, we will not use such a large n.

In this project, you will use Julia to compute the speed measured in
flops of the lab computer and further measure how the time Tn depends
on the size n× n of the matrix A.

The term Linpack refers to a collection of Fortran subroutines created
in the 1970s for solving linear algebra problems. Over the years these sub-
routines have been refactored into two parts.

• A machine-dependent part known as the blas (the basic linear algebra
subprograms) that perform vector-vector, matrix-vector and matrix-
matrix arithmetic.

• A machine-independent part (still called Linpack) which uses the blas
to solve systems of linear equations, eigenvalue-eigenvector problems
and other linear-algebra problems.

Since the computers in the lab are not equipped with a gpu or vector
accelerator, Julia uses Linpack with Openblas when performing the left-
division A\b to solve Ax = b. This is an intrinsically parallel task; however,
a bit of Linux shell magic is required before starting Julia to specify the
number of cpu cores to use. Note that slightly different commands may be
required for Microsoft Windows and Macintosh.

Since many cpu cores support simultaneous hardware threads, the par-
allelism is actually determined by the number of threads. To check know
how many threads are available type nproc in a terminal. For example,

$ nproc
4

indicates four threads are available. In this particular case there were two
cpu cores each with two threads. The lab computers may have more.

Sometimes, one might want to leave some cpu cores idle for other tasks
or users. For the purpose of seeing how fast the lab computer is, we tell
Openblas to use all the threads and then start Julia with

4

https://www.top500.org/lists/top500/

Computer Lab 03 Solving Linear Systems

$ export OPENBLAS_NUM_THREADS=4
$ julia

_
_ _ _(_)_ | Documentation: https://docs.julialang.org
(_) | (_) (_) |
_ _ _| |_ __ _ | Type "?" for help, "]?" for Pkg help.
| | | | | | |/ _` | |
| | |_| | | | (_| | | Version 1.6.7 (2022-07-19)

_/ |__'_|_|_|__'_| | Official https://julialang.org/ release
|__/ |
julia>

Note that the export command to set the number of threads is specific to
each terminal window. So if you open another, you will again need to type

$ export OPENBLAS_NUM_THREADS=4

to enable use of all available threads. At this point we are ready to solve
Ax = b using all threads of all cpu cores.

Since solving Ax = b for large values of n tends to stress the hardware,
it can happen that an unexpected hardware malfunction occurs during the
computation. It is important to detect such malfunctions. Truthfully speak-
ing, verifying that a computer is functioning correctly is probably the more
important use of the Linpack benchmark these days.

To detect errors, it is best to solve a problem to which the answer is
already known. To this end, we construct a linear system with a known
solution by starting with x the desired answer—usually the vector with all
ones—and setting b = Ax. Then solving with b on the right side yields an
approximation x∗ of x. If things go well, ∥x∗ − x∥ should be small.

The program flops.jl shown below solves Ax = b for n = 2000 and
returns the maximum measured speed among five trials at the end.

1 # flops.jl
2 using LinearAlgebra
3

5

Computer Lab 03 Solving Linear Systems

4 n=2000
5 flmax=0
6 println("n = ",n)
7 for i=1:5
8 A=rand(n,n)
9 b=A*ones(n)

10 Tn=@elapsed x=A\b
11 flops=1/Tn*(2/3*n^3+2*n^2)
12 global flmax=max(flmax,flops)
13 println("Tn = ",Tn)
14 println("Error = ",norm(x-ones(n)))
15 println("Flops = ",flops)
16 end
17 println()
18 println("Maximum Flops ",flmax)

This program can be run by typing include("flops.jl") in the repl.
The output should look similar to

julia> include("flops.jl")
n = 2000
Tn = 1.763931903
Error = 4.4429052618528094e-11
Flops = 3.0280836376104326e9
Tn = 0.386692098
Error = 3.2498676403918044e-10
Flops = 1.3812884620500658e10
Tn = 0.381068803
Error = 1.4049416519342912e-10
Flops = 1.4016716381092297e10
Tn = 0.386438117
Error = 1.972178603916605e-10
Flops = 1.3821962944026384e10
Tn = 0.381153727
Error = 3.2211930596149373e-10
Flops = 1.401359334821179e10

6

Computer Lab 03 Solving Linear Systems

Maximum Flops 1.4016716381092297e10

If in doubt that all cpu cores are being used, monitor the system status by
running top or htop in another terminal window. Then increase the value
of n until the run of flops.jl takes long enough to confirm all cpu cores
are active. On a computer with 16 gb ram a matrix with n = 20 000 is
possible. Don’t increase n too much or you may run out of memory.

To complete this lab add an additional loop to the flops.jl program
such that for each value of n given by n = 1000, 2000, 3000, 4000 it solves
Ax = b five times. Report the maximum measured speed in flops among
all of the twenty trails at the end.

Submitting Your Work

A single pdf file should be submitted for grading that contains

• A program the finds the maximum flops among twenty trials.

• The output from running that program.

After debugging and making sure your program runs correctly, you may
prepare your submission by typing

$ export OPENBLAS_NUM_THREADS=`nproc`
$ julia flops.jl >flops.out
$ j2pdf -o submit03.pdf flops.jl flops.out

For convenience, the export above sets OPENBLAS_NUM_THREADS automatically
to the number of threads reported by the nproc command. Make sure to
use the back quote in the top left corner of the keyboard or it won’t work.
It is also fine to set OPENBLAS_NUM_THREADS manually as described earlier.

Before uploading, check submit03.pdf using the pdf previewer with

$ evince submit03.pdf &

to make sure the flops output looks correct and everything else. Please
reboot into Microsoft Windows before leaving the lab.

7

flops.jl
using LinearAlgebra

n=2000
flmax=0
println("n = ",n)
for i=1:5
	A=rand(n,n)
	b=A*ones(n)
	Tn=@elapsed x=A\b
	flops=1/Tn*(2/3*n^3+2*n^2)
	global flmax=max(flmax,flops)
	println("Tn = ",Tn)
	println("Error = ",norm(x-ones(n)))
	println("Flops = ",flops)
end
println()
println("Maximum Flops ",flmax)

