
Computer Lab 04 The Spectral Norm

In science and engineering an important goal is to become a skilled prac-
titioner by doing it yourself. The computer labs provide computational
experience related to the analytic theory presented in the lectures.

Matrix Norms

This lab is about computing the matrix norm of A ∈ Rm×n given by

∥A∥ = max
{
∥Ax∥ : ∥x∥ ≤ 1

}
.

Note the matrix norm is defined in terms of vector norms. Thus, to every
kind of vector norm corresponds a different matrix norm.

The vector norm

∥x∥∞ = max
{
|xi| : i = 1, . . . , n

}
was considered in the text. In that case, the corresponding matrix norm

∥A∥∞ = max
{
∥Ax∥∞ : ∥x∥∞ ≤ 1

}
may be computed as

∥A∥∞ = max
{ n∑

j=1

|aij | : i = 1, . . . ,m
}
.

In this lab we consider the Euclidean norm ∥x∥2 =
√
x · x and recall

the formula for computing the corresponding matrix norm

∥A∥2 = max
{
λ
1/2
i : i = 1, . . . , n

}
where λi are the eigenvalues of B = ATA. Upon defining the spectrum

σ(B) =
{
λ : λ is an eigenvalue of B

}
.

we obtain
∥A∥2 = max

{
λ1/2 : λ ∈ σ(ATA)

}
.

This is why ∥A∥2 is called the spectral norm. The goal in this lab is to find
the spectral norm of an individualized 5 × 4 matrix.

1

Computer Lab 04 The Spectral Norm

Each person in the lab will have a different matrix. Your individualized
matrix may be obtained by clicking on the following link:

https://fractal.math.unr.edu/~ejolson/466-23/specnorm/snmatrix.cgi

Please do not use anyone else’s matrix for this lab.
Upon clicking on the link, I obtained

The following discussion concerns the matrix which appeared when I clicked
the above link. That matrix is different than what you will obtain when
you click the same link. To finish this lab please repeat these same steps
but for your own individualized matrix.

The Statistical Approach

Consider again the definition

∥A∥2 = max
{
∥Ax∥2 : ∥x∥2 ≤ 1

}
.

For notational convenience the subscripts on the norms will be dropped
throughout the rest of this lab so that ∥A∥ = ∥A∥2, ∥Ax∥ = ∥Ax∥2 and
∥x∥ = ∥x∥2. An intuitive way to approximate ∥A∥ would be to randomly
select vectors x such that ∥x∥ ≤ 1, plug them in to ∥Ax∥ and then choose
the largest resulting value for ∥A∥.

Given a non-zero vector x ∈ Rn with ∥x∥ < 1 define the corresponding
unit vector z = x/∥x∥. Since

∥Az∥ =
∥∥∥A x

∥x∥

∥∥∥ =
1

∥x∥
∥Ax∥ ≥ ∥Ax∥,

one immediately has

∥A∥ = max
{
∥Az∥ : ∥z∥ = 1

}
.

Thus, it is sufficient to randomly test unit vectors to approximate ∥A∥.

2

https://fractal.math.unr.edu/~ejolson/466-23/specnorm/snmatrix.cgi

Computer Lab 04 The Spectral Norm

Before writing the code, reflect for a moment that this method of find-
ing ∥A∥ is likely to be inefficient and of low accuracy. Such is typical for
calculations that follow directly from the definition. The advantage is such
a calculation is less likely to have mathematical errors or software bugs.
Moreover, having two different ways to solve the same problem serves as a
check of correctness for the algorithms we implement later.

Since computers—even ChatGPT—will happily produce answers that
are completely wrong without warning or feelings of guilt, it is important
to work in such a way that provides consistency checks on the final answer.
The point here is that one wouldn’t be using a computer in the first place
if the answer were already known.

Julia has a built-in function called rand(n) that makes random vectors.
This function samples a random vector V ∈ Rn where each Vi is uniformly
distributed in [0, 1). Thus, rand(2) always produces a vector in the first
quadrant. To produce random vectors in all directions, apply the transform
Xi = 2Vi − 1 so Xi is uniformly distributed in [−1, 1).

For example,

julia> x1=2*rand(4).-1
4-element Vector{Float64}:

0.5769703226246823
-0.7694043276720857
0.04742602668985452
0.8611118814209817

julia> x2=2*rand(4).-1
4-element Vector{Float64}:
-0.9776982954790019
0.1938427905675142

-0.03880922639686535
0.2911117285223299

produces two random samples in R4. Note that since these are random
variables you will get different vectors each time they are sampled.

Load your individualized matrix A into Julia and then compute ∥Az∥
where z = x/∥x∥ is the unit vector corresponding to x = x1 and x = x2.
For the matrix downloaded earlier it follows that

3

Computer Lab 04 The Spectral Norm

julia> A=[0.23 0.29 -1.85 -3.48;
4.24 4.00 2.36 4.82;
4.56 -2.97 1.90 -0.51;
-1.18 -2.55 -4.86 0.50;
3.31 -2.04 -2.58 0.35]

5×4 Matrix{Float64}:
0.23 0.29 -1.85 -3.48
4.24 4.0 2.36 4.82
4.56 -2.97 1.9 -0.51

-1.18 -2.55 -4.86 0.5
3.31 -2.04 -2.58 0.35

julia> using LinearAlgebra

julia> norm(A*x1/norm(x1))
5.981497801013638

julia> norm(A*x2/norm(x2))
6.516247741068198

Taking the largest of the two implies

∥A∥ ≥ 6.516247741068198.

Now check a million different directions for a sharper bound. First,
create the function sample to make generating samples easier.

julia> function sample()
while true

x=2*rand(4).-1
r=norm(x)
if r>0

return x/r
end

end
end

4

Computer Lab 04 The Spectral Norm

sample (generic function with 1 method)

The condition r > 0 avoids the chance that the zero vector was chosen
at random. Though zero is unlikely, checking could be important when
creating a very large number of samples.

To make sure everything is fine, test the function interactively.

julia> sample()
4-element Vector{Float64}:

0.37505747491848035
-0.23812495410387083
0.5682134947095993

-0.6926484109349471

julia> sample()
4-element Vector{Float64}:
-0.2890023067322923
0.7717879209913837
0.15436044914663802

-0.5449714886619847

Now run a loop to compute the sharper bound

julia> Abound=0.0
for i=1:1000000

z=sample()
t=norm(A*z)
if Abound<t

Abound=t
end

end

julia> Abound
9.204731194747062

This implies
∥A∥ ≥ 9.204731194747062.

5

Computer Lab 04 The Spectral Norm

Your individualized matrix A may have a much different bound. On the
other hand, even for the same matrix the bound will be slightly different
each time due to the randomness.

Before finishing this section note that Julia allows the same computa-
tion to be performed by passing an iterator to a function as

julia> maximum(norm(A*sample()) for i=1:1000000)
9.20451625282672

This functional approach looks simpler and is sometimes clearer to reason
about, but there is no speed advantage either way. Often I find loops easier
because they express the algorithm in explicit steps in much the same way
as the hardware actually works.

The Spectral Approach

In this section we set B = ATA and then use the power method to find the

largest eigenvalue λ1 of B. It follows that ∥A∥ = λ
1/2
1 .

We shall use the scaled power method which renormalizes the approx-
imation w(j) of the eigenvector at each iteration to prevent numerical over-
flow and underflow. Recall our individualized matrix A ∈ R5×4. Conse-
quently B ∈ R4×4 and so n = 4.

Let w(0) ∈ R4 be an initial approximation of an eigenvector corre-
sponding to λ1. Almost any non-zero vector will work. Set y(0) = w(0)

and repeatedly carry out the following steps for j = 1, 2, 3, . . . until the
approximation in step (c) converges.

(a) Calculate wj = By(j−1).

(b) Find p such that |w(j)
p | = max

{
|w(j)

i | : i = 1, . . . , n
}
.

(c) Evaluate the approximation λ
(j)
1 ≈ w(j) · y(j−1)

y(j−1) · y(j−1)
.

(d) Calculate y(j) = w(j)/w
(j)
p .

The following Julia code chooses w(0) randomly, iterates 30 times and prints

the value of λ
(j)
1 at each iteration.

julia> B=A'*A

6

Computer Lab 04 The Spectral Norm

w=sample()
y=copy(w)
for j=1:30

w=B*y
p=argmax(abs.(w))
lambda1=(w'*y)/(y'*y)
println("lambda1^($j)=$lambda1")
y=w/w[p]

end
lambda1^(1)=69.47112082263426
lambda1^(2)=82.17910796253742
lambda1^(3)=84.19541584480642
lambda1^(4)=84.59223680274377
lambda1^(5)=84.68990112869551
...omitted...
lambda1^(27)=84.72747261391937
lambda1^(28)=84.72747261391945
lambda1^(29)=84.72747261391945
lambda1^(30)=84.72747261391943

Taking square roots as

julia> sqrt(84.72747261391943)
9.204752718781718

implies that ∥A∥ ≈ 9.204752718781718. It is satisfying to observe this ap-
proximation is similar to the bound obtained with the statistical approach.

The Built-in Matrix Norm

Julia has a built-in function called opnorm which uses the spectral approach
to find ∥A∥. The main improvement is an algorithm more complicated and
efficient than the power method is used to find the largest eigenvalue of B.

The result for the matrix downloaded earlier is

julia> opnorm(A)
9.204752718781718

7

Computer Lab 04 The Spectral Norm

Not surprisingly the result is comparable to what was obtained earlier.
At this point you may be wondering why one went to so much trouble to

approximate ∥A∥ in the previous sections when a built-in function that does
the same thing already exists. My understanding is that doing it yourself
builds intuition about how various algorithms works in practice along with
the computational skills needed to tackle problems that haven’t been solved
before. At the same time, if it becomes necessary to find a matrix norm in
a practical application the built-in function would be preferred.

Submitting Your Work

A single pdf file should be submitted for grading that contains

• A program that approximates ∥A∥2 for your individualized matrix in
three ways: Using the statistical approach with a million samples, using
the spectral approach with 30 iterations and finally using opnorm.

• The output from running that program.

After debugging and making sure your program runs correctly, you may
prepare your submission by typing

$ julia matnorm.jl >matnorm.out
$ j2pdf -o submit04.pdf matnorm.jl matnorm.out

Before uploading, check submit04.pdf using the pdf previewer with

$ evince submit04.pdf &

to make sure the output from the three computations is consistent. Please
reboot into Microsoft Windows before leaving the lab.

8

matnorm.jl -- Find the Matrix norm in three different ways

A=[0.23 0.29 -1.85 -3.48;
 4.24 4.00 2.36 4.82;
 4.56 -2.97 1.90 -0.51;
 -1.18 -2.55 -4.86 0.50;
 3.31 -2.04 -2.58 0.35]

using LinearAlgebra

function sample()
 while true
 x=2*rand(4).-1
 r=norm(x)
 if r>0
 return x/r
 end
 end
end

println("*** The Statistical Approach ***")
function statnorm(A)
	Abound=0.0
	for i=1:1000000
	 z=sample()
	 t=norm(A*z)
	 if Abound<t
	 Abound=t
	 end
	end
	return Abound
end
println(" statnorm(A)=$(statnorm(A))")

println("\n*** The Spectral Approach ***")
function specnorm(A)
	B=A'*A
	w=sample()
	y=copy(w)
	lambda1=0.0
	for j=1:30
	 w=B*y
	 p=argmax(abs.(w))
	 lambda1=(w'*y)/(y'*y)
	 y=w/w[p]
	end
	return sqrt(lambda1)
end
println(" specnorm(A)=$(specnorm(A))")

println("\n*** The Built-in Matrix Norm ***")
println(" opnorm(A)=$(opnorm(A))")

