
Computer Lab 07 Scientific Visualization

The computer labs provide computational experience related to the ana-
lytic theory presented in the lectures. The main tool for these exercises is a
programming language called Julia designed for the implementation of nu-
merical algorithms that combines the compiled efficiency of C and Fortran
with the interactive and notational convenience of Matlab and Python.

In science and engineering an important goal is to become a skilled
practitioner by doing it yourself. To this end the computers in the lab have
been provisioned with a Linux programming environment similar to what
is deployed on the university high-performance cluster, all other supercom-
puters worldwide and for most cloud computing. To access Linux please
restart the computer using the usb network boot key for this class.

Rather than using the lab equipment it is also possible to freely install
Julia on your personal laptop. While using your own computer goes along
well with doing it yourself, I will unfortunately be unable to help with any
technical problems that might crop up in that case. Even so, I’d recommend
trying to install Julia at home, if only to avoid coming in after hours to
complete the homework. You may also use your laptop in the lab.

Note that it is possible to forgo Julia and perform all your computations
using a different programming language. Although I would be happy to
grade assignments completed using such alternatives, my opinion is Julia
makes numerical methods much easier than a general-purpose programming
language. I am also able to provide more help with Julia.

Plotting with Julia

The previous lab activity introduced Julia by using it as a desktop calculator
to solve a quadratic equation. The resulting sequence of commands were
subsequently turned into a program and uploaded for grading. The real-
world advantage of converting an interactive session to a non-interactive
program is that the resulting computations can then be scheduled to run
on a remote server without further input from the user.

Over the years computers have become faster and more powerful while
the computer simulations people were interested in have become larger and
more involved. As a result many computations of modern scientific and
engineering relevance still take a long time. The possibility of being able to
go to sleep or do other things while a computer performs a large calculation
is important. Therefore, although we restrict the size of our problems in the
lab so they finish in the blink of an eye, we consciously model the switch-

1



Computer Lab 07 Scientific Visualization

ing back and forth between the interactive and non-interactive techniques
needed for practical numerical methods.

Since Julia was designed to work well in both interactive and non-
interactive contexts, this course can explore both ways of using a computer
with relative ease. Neither interactive nor non-interactive methods should
be seen as better than the other, but depending on the task at hand one
or the other may be more convenient. Knowing both guards against the
danger a person might get stuck using an inconvenient mode of operation
for their future work, waste time or fail entirely.

The present activity is data visualization. Depending on the computa-
tional effort needed to render the data, this task may be better performed
interactively or non-interactively. As before we start with interactive tech-
niques and convert our work to a self-contained program at the end.

There are two simple visualization tools we will employ—line graphs
and point plots. In particular, the goal in this lab is to graph

f(x) = cosx− 2x (2.1)

and then annotate the point (x0, f(x0)) for x0 = 1.
Note that in an upcomming lab we will use Newton’s method to ap-

proximate a root of this same function. Thus, the present activity reflects
the task of visualizing a problem before setting out to solve it. Note that
unlike the guide for the previous lab which gave a step-by-step account of
how to solve the exact problem to be graded, we describe here how to plot
a similar function so as not so spoil the fun of doing it yourself.

Suppose then instead of (2.1) that we seek to graph

f(x) = 5xe−x − 1 (2.2)

and annotate the point (x0, f(x0)) for x0 = 2.
Open the Julia repl and enter

f(x)=5*x*exp(-x)-1 and x0=2.

We shall now use the Julia Plots library to create a graph of the function
along with the desired point.

Load the Plots library into the repl by typing using Plots. At this
point the output on the screen should look like

2



Computer Lab 07 Scientific Visualization

julia> f(x)=5*x*exp(-x)-1
f (generic function with 1 method)

julia> x0=2
2

julia> using Plots

julia>

It is possible, especially if using your own personal computer rather
than the one in the lab, that an error will occur when trying to load the
plotting library. If you see the following on your screen

julia> using Plots
ERROR: ArgumentError: Package Plots not found in current path:
- Run `import Pkg; Pkg.add("Plots")` to install the Plots package.

Stacktrace:
[1] require(into::Module, mod::Symbol)

@ Base ./loading.jl:893

julia>

This may be resolved by installing the Plots package and trying again.
To install Plots use either the package manager built into the repl or

follow the suggestion provided by the error message. The suggested method
with Pkg.add can also be used inside a program code whereas the built-in
package manager is simpler but only works from within the repl. As the
error message already explains how to use Pkg.add, how to use the built-in
package manager will be explained henceforth.

To start the built-in package manager press the ] key. The prompt on
the screen should now look like

(@v1.6) pkg>

3



Computer Lab 07 Scientific Visualization

Now type add Plots and press enter.
Curiously the plotting library is one of the larger packages and has

hundreds dependencies. As a result it will take a few minutes to download
and install. This is why Plots is preloaded onto the lab computers. If you
are reading this document ahead of time and plan to use your own laptop
in the lab, it would also be reasonable to preload Plots before class.

When the package manager is finished the screen should look like

Precompiling project...
131 dependencies successfully precompiled in 204 seconds

(@v1.6) pkg>

To exit the built-in package manager press ⟨backspace⟩ until you get back to
the julia> prompt. At this point it should be possible to type using Plots
and continue with the lab.

To create a plot specify a range of x-values and map them to the
corresponding y-values by typing

xs=0:0.1:5 and ys=f.(xs)

Here xs is an iterator for the interval [0, 5] with points spaced 0.1 units
apart. The . which appears in the expression f.(xs) indicate the function
should be applied pointwise to each value of xs. The Julia documentation
describes this operation as a broadcast; however, to me the . mnemonically
indicates a pointwise mapping. The result ys will be a 51-element vector.

Note that the assignment to ys displays the resulting vector up to as
many values as fit on the screen. In cases where the return value fills the
screen it is sometimes desirable to suppress printing it. This can be done
by placing a semicolon at the end of a command. In the present case

ys=f.(xs);

assigns the same 51-element vector to ys without filling the screen with the
values of that vector.

Now it should be possible to type

plot(xs,ys) and scatter!([x0],[f(x0)])

4



Computer Lab 07 Scientific Visualization

to show a graph of the function and the initial approximation for the root.
Note that the ! in scatter! tells the plotting library to combine the point
plot of (x0, f(x0)) with the graph of f(x).

The relevant windows on your screen should look like

Graphs are useful for interactive visualization. The one here shows
there is a root between 2 and 3 and further suggests that Newton’s method
starting at x0 = 2 will converge to that root. That will be the topic of the
next computing lab. For now we note the benefit of including all kinds of
computer-rendered visualizations in a presentation or written report. Thus,
we need a way of saving our graph for later use.

Type savefig("graph07.pdf") to write the graph to a file. The result-
ing file graph07.pdf can be embedded into many word processors as well as
documents like this one prepared using the TEX typesetting system. Such
pdf files are also suitable to upload for grading.

5



Computer Lab 07 Scientific Visualization

Submitting Your Work

For this lab two things should be uploaded for grading:

• A graph of the function f(x) for the problem in equation (2.1) which
further illustrates the point at the specified value of x0.

• A self-contained program that creates the graph.

To help with the second item above and continue this introduction to sci-
entific computing, we do it except for equation (2.2) as follows.

After copying the relevant lines from the repl into the file funplot.jl
using a text editor we obtain the program

1 f(x)=5*x*exp(-x)-1
2 x0=2
3

4 using Plots
5 xs=0:0.1:5
6 ys=f.(xs)
7 plot(xs,ys)
8 scatter!([x0],[f(x0)])
9 savefig("graph02.pdf")

To complete this lab modify lines 1 and 2 in the above program to plot
equation (2.1), run it, convert to the source code to pdf format and check
the two output files. The results in the terminal should look like

$ julia funplot.jl
$ j2pdf -o submit02.pdf funplot.jl
[...omitted output...]
$ evince submit02.pdf &
$ evince graph02.pdf &

Due to the complexity of the Julia Plots library, it may take a while for
the first command to finish. Finally, upload graph07.pdf and submit07.pdf
for grading to the course management system. If using one of the lab
computers, please reboot it into Microsoft Windows before leaving.

6



f(x)=5*x*exp(-x)-1
x0=2

using Plots
xs=0:0.1:5
ys=f.(xs)
plot(xs,ys)
scatter!([x0],[f(x0)])
savefig("graph02.pdf")


