Math/CS 467/667: Lecture 3

Given a quadrature rule

$$
\begin{equation*}
\operatorname{quad}(f)=\sum_{k=0}^{n-1} w_{k} f\left(x_{k}\right) \quad \text { such that } \quad \int_{-1}^{1} f(x) d x \approx \operatorname{quad}(f) \tag{1}
\end{equation*}
$$

is exact when f is a polynomial of degree less than or equal N, consider the approximation

$$
\int_{a}^{b} f(x) d x \approx \operatorname{comp}(f, a, b, m) \quad \text { where } \quad \operatorname{comp}(f, a, b, m)=\sum_{i=0}^{m-1} \operatorname{quad}\left(g_{i}\right)
$$

is the composite quadrature formula on $[a, b]$ over m subintervals given by

$$
g_{j}(x)=\frac{h}{2} f\left(\frac{x h}{2}+a+h j+\frac{h}{2}\right) \quad \text { and } \quad h=\frac{b-a}{m} .
$$

Before beginning our analysis of the composite quadrature formula comp (f, a, b, m), we first prove a lemma that results from the monotonicity of quad (f) when the weights w_{k} are positive but also holds, in general, when they have mixed signs. Note that there are examples of naturally occurring Newton-Cotes quadrature formulas for which some of the weights w_{k} turn out to be negative. In the case when quad is given by Gaussian quadrature we have $N=2 n-1$ and the weights are positive.
Lemma 2. There is a constant $c \geq 2$ depending only on n and the w_{k} 's such that

$$
|f| \leq M \quad \text { implies } \quad|\operatorname{quad}(f)| \leq c M
$$

Proof. By the triangle inequality

$$
|\operatorname{quad}(f)| \leq \sum_{k=0}^{n-1}\left|w_{k}\right|\left|f\left(x_{k}\right)\right| \leq c M \quad \text { where } \quad c=\sum_{k=0}^{n-1}\left|w_{k}\right| .
$$

In the case the $w_{k} \geq 0$ for all k we further have that

$$
c=\sum_{k=0}^{n-1}\left|w_{k}\right|=\sum_{k=0}^{n-1} w_{k}=\operatorname{quad}(1)=\int_{-1}^{1} 1 \cdot d x=2
$$

Therefore, take $c=2$ when all the weights are non-negative and note that $c>2$ when some of the weights are negative. This finishes the proof of the lemma.

Note under the assumption the weights w_{k} are non-negative the approximation quad is, in fact, monotone as can be seen as follows: Suppose $f(x) \leq g(x)$ for all x, then

$$
\operatorname{quad}(f)=\sum_{k=0}^{n-1} w_{k} f\left(x_{k}\right) \leq \sum_{k=0}^{n-1} w_{k} g\left(x_{k}\right)=\operatorname{quad}(f)
$$

This, in particular, implies \mid quad $(f) \mid \leq \operatorname{quad}(|f|)$, which means the approximation of the area under the absolute value of a function is always larger than the absolute value of the approximation of its integral.

We characterize now the error in the composite quadrature formula by proving
Theorem 3. If f has $N+1$ continuous derivatives on the interval $[a, b]$ then the error

$$
E_{m}=\left|\int_{a}^{b} f(x) d x-\operatorname{comp}(f, a, b, m)\right|=\mathcal{O}\left(h^{N+1}\right) \quad \text { as } \quad h \rightarrow 0
$$

Proof. Let $t_{j}=a+h j$ and note that

$$
\int_{a}^{b} f(x) d x=\sum_{j=0}^{m-1} \int_{t_{j}}^{t_{j+1}} f(t) d t
$$

For each of the integrals over the intervals $\left[t_{j}, t_{j+1}\right]$ of length h appearing on the right hand side make the change of variables

$$
t=\frac{-t_{j}(x-1)}{2}+\frac{t_{j+1}(x+1)}{2}=\frac{x h}{2}+a+h j+\frac{h}{2} \quad \text { and } \quad d t=\frac{h}{2} d x
$$

to obtain

$$
\int_{t_{j}}^{t_{j+1}} f(t) d t=\frac{h}{2} \int_{-1}^{1} f\left(\frac{x h}{2}+a+h j+\frac{h}{2}\right) d x=\int_{-1}^{1} g_{j}(x) d x
$$

We now use the fact that quad is exact for polynomials of degree less or equal N to obtain bounds on the error. By the triangle inequality

$$
\begin{equation*}
E_{m} \leq \sum_{j=0}^{m-1}\left|\int_{-1}^{1} g_{j}(x) d x-\operatorname{quad}\left(g_{j}\right)\right| \tag{4}
\end{equation*}
$$

Since f has $N+1$ continuous derivatives and the maximum of the continuous function $f^{(N+1)}(x)$ is guaranteed to exist on the closed interval $[a, b]$, then we may define

$$
M=\max \left\{\left|f^{N+1}(x)\right|: x \in[a, b]\right\} .
$$

Upon noting that g_{j} also has $N+1$ continuous derivatives, it follows from Taylor's theorem that $g_{j}(x)=T_{j}(x)+R_{j}(x)$ where T_{j} is the Taylor polynomial of degree N expanded about $x=0$ and R_{j} is the remainder given by

$$
R_{j}(x)=\frac{x^{N+1}}{(N+1)!} g_{j}^{(N+1)}\left(\xi_{j}\right) \quad \text { for some } \xi_{j} \text { between } 0 \text { and } x .
$$

Since $x \in[-1,1]$ then $\xi_{j} \in[-1,1]$. By the chain rule we obtain

$$
\begin{aligned}
\left|g_{j}^{(N+1)}\left(\xi_{j}\right)\right| & =\frac{h}{2}\left|\left(\frac{d}{d x}\right)^{N+1} f\left(\frac{x h}{2}+a+h j+\frac{h}{2}\right)\right|_{x=\xi_{j}} \\
& =\left(\frac{h}{2}\right)^{N+2}\left|f^{(N+1)}\left(\frac{\xi_{j} h}{2}+a+h j+\frac{h}{2}\right)\right| \\
& \leq\left(\frac{h}{2}\right)^{N+2} \max \left\{\mid f^{(N+1)}(t): t \in\left[t_{j}, t_{j+1}\right]\right\} \leq\left(\frac{h}{2}\right)^{N+2} M .
\end{aligned}
$$

Consequently,

$$
\left|R_{j}(x)\right| \leq \frac{|x|^{N+1}}{(N+1)!}\left(\frac{h}{2}\right)^{N+2} M \leq h^{N+2} B \quad \text { where } \quad B=\frac{1}{(N+1)!} \cdot \frac{M}{2^{N+2}}
$$

Plugging the Taylor polynomial and remainder into (4) and using the fact that quad is exact for polynomials of degree less than or equal N we obtain

$$
E_{m} \leq \sum_{j=0}^{m-1}\left|\int_{-1}^{1} R_{j}(x) d x\right|+\sum_{j=0}^{m-1}\left|\operatorname{quad}\left(R_{j}\right)\right|
$$

At this point we use the monotonicity of the integral-the fact that the area under the absolute value of a curve is greater than the original area-to estimate

$$
\left|\int_{-1}^{1} R_{j}(x) d x\right| \leq \int_{-1}^{1}\left|R_{j}(x)\right| d x \leq \int_{-1}^{1} h^{N+2} B=2 h^{N+2} B .
$$

Combining the above estimate with the Lemma 2 applied to $\left|\operatorname{quad}\left(R_{j}\right)\right|$ yields

$$
\begin{aligned}
E_{m} \leq \sum_{i=0}^{m-1}(2 & +c) h^{N+2} B=(2+c) m h^{N+2} B \\
& =(2+c) B(b-a) h^{N+1}=\mathcal{O}\left(h^{N+1}\right) \quad \text { as } \quad h \rightarrow 0
\end{aligned}
$$

This finishes the proof of the theorem.
We remark in the case of Gaussian quadrature where $N=2 n-1$ that the results of Theorem 3 may be simplified to obtain

$$
E_{m} \leq 4 B(b-a)\left(\frac{b-a}{m}\right)^{2 n}
$$

In applications one typically chooses n fixed and then increases m until the desired error goals are met. It is, of course, possible to increase n as well. However, in doing so, one must remember that B also depends on n through M.

If f is an analytic function such that its Taylor series converges on a closed disk in the complex plane of radius r at every point $x \in[a, b]$, this means for complex ω that

$$
\max \left\{\frac{r^{2 n}}{(2 n)!}\left|f^{(2 n)}(\omega)\right|:|\omega-x| \leq r\right\} \leq \max \{|f(\omega)|:|\omega-x|=r\}
$$

for all $n \geq 0$. It follows that $(2+c) B(2 r)^{2 n}(b-a)$ is bounded, say by A, and consequently it holds for every $h<2 r$ that

$$
E_{m} \leq A\left(\frac{h}{2 r}\right)^{2 n} \rightarrow 0 \quad \text { exponentially as } \quad n \rightarrow \infty
$$

Thus, provided h is small enough, it is also possible - though less common-to meet any error bounds with exponential efficiency by taking n sufficiently large.

