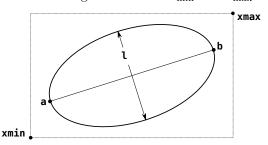
1. The two-dimensional Poisson equation is the elliptic partial differential equation $\Delta u = f$ for $x \in \Omega$ with boundary conditions $u(x) = \psi(x)$ for $x \in \partial \Omega$. To verify the performance of the finite-difference method start with a differentiable function that will serve as the exact solution. For this assignment let

$$u_{\rm ex}(x) = 2x_1^4 \cos 3x_2 + e^{2x_2} \sin 2x_1.$$

Now, define $\psi(x) = u_{\rm ex}(x)$ on $\partial\Omega$ and find f by computing $\Delta u_{\rm ex}$. What is the value of f(x)?

2. Let Ω be an ellipse contained in a bounding box between x_{\min} and x_{\max} of the form



where a and b are the endpoints of the major axis and ℓ is the length of the minor axis. For

$$a = (1.5, 2),$$
 $b = (6.5, 3),$ $\ell = 2.6,$ $x_{\min} = (1, 1)$ and $x_{\max} = (7, 4)$

find a function domain(x) such that $\Omega = \{x \in \mathbf{R}^2 : domain(x) > 1\}$. Note there are many choices that will work equally well. One idea is to use

$$domain(x) = 2 - (x - c)^T R^T S^2 R(x - c)$$

where c is the center of the ellipse, S is a diagonal matrix with the values 2/|a-b| and $2/\ell$ on the diagonal and R is a suitable rotation.

3. Subdivide the bounding box horizontally using mres = 100 grid points and vertically with the same spacing. This is how the program poisson.jl from class creates the grid. Then use the 5-point stencil

to create an approximate solution $u_{\rm ap}$ to Poisson's equation. Define

$$\|u\|^2 = \sum_{x \in \mathcal{I}} |u(x)|^2 h^2$$
 where $h = \frac{6}{\mathsf{mres} - 1}$, $\mathcal{J} = \{x_{ij} : x_{ij} \in \Omega\}$

and x_{ij} are the grid points. Find the error $||u_{ap} - u_{ex}||$ in your approximation and check that it is approximately 6.5213971543769285. What is the relative error $||u_{ap} - u_{ex}|| / ||u_{ex}||$?

- **4.** Let $E_n = ||u_{\rm ap} u_{\rm ex}||$ be the error when ${\sf mres} = n$. Verify the order of convergence of the 5-point stencil is $\mathcal{O}(h^2)$ by checking that $E_n/E_{2n} \approx 4$ for n = 100, 200, 400 and 800. Although the boundary is only resolved with $\mathcal{O}(h)$, why in this case does that not affect the convergence of the solution?
- 5. [Extra Credit and Math 667] Modify your program to use the the 9-point stencil

Compute E_n/E_{2n} for n=100, 200, 400 and 800. What is the apparent order of the method? Is this consistent with the theoretical result you expected? Replace f by $g=f+\frac{1}{12}h^2\Delta f$. Now what happens?

1