HW3 problems 3.2.1bdf, 3.3.1 de, 3.3.7, 3.3.17 abc, 3.4.5, 3.5.1 abc (due Apr 6)
3.2.1. For the following functions, sketch the Fourier series of $f(x)$ (on the interval $-L \leq$ $x \leq L)$. Compare $f(x)$ to its Fourier series:
(a) $f(x)=1$

■ * (b) $f(x)=x^{2}$
(c) $f(x)=1+x$
\square
*(d) $f(x)=e^{x}$
(e) $f(x)= \begin{cases}x & x<0 \\ 2 x & x>0\end{cases}$
$\square *(\mathbf{f}) \quad f(x)= \begin{cases}0 & x<0 \\ 1+x & x>0\end{cases}$
(g) $f(x)= \begin{cases}x & x<L / 2 \\ 0 & x>L / 2\end{cases}$
(b) Fourier series converges to

The Fourier series is the same as the original function on $[-L, L]$
since the periodic extension is pieceuriso contionvers.
(d) Fourier series converges to

The Fourier series is different than the original function at $-L$ aud L

Since the periodic extension is not continuous at $-h$ or L.
(f) Fourier series converges to

The Fourier series is different than the original function at $-L, 0$ and L

Since the periodic extension is not continuous at $-h, 0$ and L.
3.3.1. For the following functions, sketch $f(x)$, the Fourier series of $f(x)$, the Fourier sine series of $f(x)$, and the Fourier cosine series of $f(x)$:
(a) $f(x)=1$
(b) $f(x)=1+x$
(c) $f(x)= \begin{cases}x & x<0 \\ 1+x & x>0\end{cases}$

D ${ }^{*}(\mathbf{d}) \quad f(x)=e^{x}$
(e) $f(x)= \begin{cases}2 & x<0 \\ e^{-x} & x>0\end{cases}$
(d) The Frowsier sine series is given by the odd extension of then function on [0,4]

The sine series differs from the function at D and L on the interval $[0, L]$
since the odd extension is not continuous at $-L, O$ and L.
The Foviler cosine series is

The cosine series is equal to the orecioval function on the interval $[0, L]$
since the conn extension is piecewise smooth.
(e) The Fourier sine aeries is

The sine series differs from the function at 0 and L on the interval $[0, L]$
since the odd exterision is discontinuous at $-L, 0$ and L.

The Fourier Cosine series is

The cosine series is equal the original function except at 0 where the original fructim wain't defined
since the even extension is piecewise smooth everyenthu except at O where if wasint defined.
$11 \quad x>L / Z \quad$
3.3.7. Show that e^{x} is the sum of an even and an odd function.

$$
\begin{aligned}
e^{x} & =\frac{1}{2} e^{x}-\frac{1}{2} e^{-x}+\frac{1}{2} e^{-x}+\frac{1}{2} e^{x} \\
& =\frac{1}{2}\left(e^{x}-e^{-x}\right)+\frac{1}{2}\left(e^{-x}+e^{x}\right)=f_{0}(x)+f_{e}(x)
\end{aligned}
$$

where f_{0} is the odd function

$$
f_{0}(x)=\frac{1}{2}\left(e^{x}-e^{-x}\right)
$$

and fe is the even function

$$
f_{e}(x)=\frac{1}{2}\left(e^{x}+e^{-x}\right)
$$

3.3.17. Consider

$$
\int_{0}^{1} \frac{d x}{1+x^{2}}
$$

I (a) Evaluate explicitly.
(b) Use the Taylor series of $1 /\left(1+x^{2}\right)$ (itself a geometric series) to obtain an infinite series for the integral.
17 (c) Equate part (a) to part (b) in order to derive a formula for π.
(a) Evaluate

$$
\int_{0}^{1} \frac{d x}{1+x^{2}}=\left.\arctan x\right|_{0} ^{1}=\arctan 1-\arctan 0=\frac{\pi}{4}
$$

(b) Since

$$
\begin{aligned}
& 1+x^{2} \sqrt{1-x^{2}+x^{4} \ldots} \\
& \frac{1+x^{2}}{-x^{2}} \\
& \frac{-x^{2}-x^{4}}{x^{4}} \\
& \frac{x^{4}+x^{6}}{-x^{6}}
\end{aligned}
$$

we obtain the at $\frac{1}{1+x^{2}}=1-x^{2}+x^{4}-x^{6}+x^{8}-\ldots 1$
It follows that

$$
\begin{aligned}
\int_{0}^{1} \frac{1}{1+x^{2}} d x & =\int_{0}^{1}\left(1-x^{2}+x^{4}-x^{6}+x^{8}-\ldots\right) d x \\
& =x-\frac{1}{3} x^{3}+\frac{1}{5} x^{5}-\frac{1}{7} x^{7}+\frac{1}{9} x^{9}-\left.\ldots\right|_{0} ^{1} \\
& =1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\ldots
\end{aligned}
$$

(c) a formula for π is

$$
\pi=4\left(1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\cdots\right)=\sum_{n=0}^{\infty} \frac{4(-1)^{n}}{2 n+1}
$$

3.4.5. Using (3.3.13) determine the Fourier cosine series of $\sin \pi x / L$.

Recall

$$
B_{n}=\frac{2}{L} \int_{0}^{L} \cos \frac{\pi x}{L} \sin \frac{n \pi x}{L} d x= \begin{cases}0 & n \text { odd } \tag{3.3.13}\\ \frac{4 n}{\pi\left(n^{2}-1\right)} & n \text { even }\end{cases}
$$

The cosine series of f is

$$
\sum_{n=0}^{\infty} a_{n} \cos \frac{n \pi x}{L}
$$

where

$$
a_{0}=\frac{1}{L} \int_{0}^{L} f(x) d x \text { and } a_{n}=\frac{2}{L} \int_{0}^{L} f(x) \cos \frac{n \pi x}{L} d x \text { for } n>0 \text {. }
$$

when $f(x)=\sin \frac{\pi x}{L}$ we obtain

$$
a_{0}=\frac{1}{L} \int_{0}^{h} \sin \frac{\pi x}{L} d x=-\left.\frac{1}{L} \frac{L}{\pi} \cos \frac{\pi x}{L}\right|_{0} ^{L}=\frac{2}{\pi}
$$

and for $n>0$ that

$$
a_{n}=\frac{2}{L} \int_{0}^{h} \sin \frac{\pi x}{L} \cos ^{n} \frac{n x}{L} d x
$$

It's unclear to me how to directly use $(3.3,13)$ as the sin and cos are interchanged. I procede by analogy and use the angle addition formula to simplify as

$$
\begin{gathered}
\sin (\alpha+\beta)=\sin \alpha \cos \beta+\cos \alpha \sin \beta \\
\sin (\alpha-\beta)=\sin \alpha \cos \beta-\cos \alpha \sin \beta \\
\hline \sin (\alpha+\beta)+\sin (\alpha-\beta)=2 \sin \alpha \cos \beta
\end{gathered}
$$

Theretre

$$
a_{n}=\frac{2}{L} \int_{0}^{L} \frac{\sin \left(\frac{\pi x}{L}+\frac{n \pi x}{L}\right)+\sin \left(\frac{\pi x}{L}-\frac{n \pi x}{L}\right)}{2} d x
$$

If $n=2 k+1$ is odd, then

$$
a_{2 k+1}=\frac{1}{L} \int_{0}^{L}\left(\sin \left(\frac{(2 k+2) \pi x}{L}\right)+\sin \left(\frac{-2 k \pi x}{L}\right)\right) d x
$$

If $k=0$ then

$$
a_{1}=\frac{1}{L} \int_{0}^{L} \sin \left(\frac{2 \pi x}{h}\right) d x=\left.\frac{-1}{2 \pi} \cos \frac{2 \pi x}{L}\right|_{0} ^{h}=0
$$

and in $k>0$ flem

$$
a_{2 k+1}=\left.\frac{-1}{(2 k+2) \pi} \cos \frac{(2 k+2) \pi x}{L}\right|_{0} ^{L}+\left.\frac{-1}{2 k \pi} \cos \frac{2 k \pi x}{L}\right|_{0} ^{L}=0
$$

If $x=2 k>0$ is even, then

$$
\begin{aligned}
a_{2 k} & =\frac{1}{L} \int_{0}^{L}\left(\sin \left(\frac{(2 k+1) \pi x}{L}\right)+\sin \left(\frac{(-2 k+1) \pi x}{L}\right)\right) d x \\
& =\left.\frac{-1}{(2 k+1) \pi} \cos \frac{(2 k+1) \pi x}{L}\right|_{0} ^{L}+\left.\frac{-1}{(-2 k+1) \pi} \cos \frac{(-2 k+1) \pi x}{L}\right|_{0} ^{L} \\
& =\frac{2}{\pi}\left(\frac{1}{1+2 k}+\frac{1}{1-2 k}\right)=\frac{2}{\pi}\left(\frac{1-2 k+1+2 k}{1-4 k^{2}}\right) \\
& =\frac{4}{\pi\left(1-4 k^{2}\right)}=\frac{-4}{\pi\left(n^{2}-1\right)} .
\end{aligned}
$$

Therefore

$$
a_{n}=\left\{\begin{array}{cl}
\frac{-9}{\pi\left(n^{2}-1\right)} & \text { it } n>0 \text { is even } \\
0 & \text { otherwise }
\end{array}\right.
$$

and it follows that

$$
\begin{aligned}
\sin \frac{\pi x}{L} \sim & \frac{2}{\pi}+\sum_{n=2}^{\infty} \frac{-4}{\pi\left(n^{2}-1\right)} \cos \frac{n \pi x}{L} \\
& =\frac{2}{\pi}+\sum_{k=1}^{\infty} \frac{-4}{\pi\left(4 k^{2}-1\right)} \cos \frac{2 k \pi x}{L} .
\end{aligned}
$$

3.5.1. Consider

$$
\begin{equation*}
x^{2} \sim \sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{L} . \tag{3.5.12}
\end{equation*}
$$

W (a) Determine b_{n} from (3.3.11), (3.3.12), and (3.5.6).
\boldsymbol{D} (b) For what values of x is (3.5.12) an equality?
$\boldsymbol{\square}$ (c) Derive the Fourier cosine series for x^{3} from (3.5.12). For what values of x will this be an equality?
(a) Recall

$$
\begin{equation*}
x=\sum_{n=1}^{\infty} B_{n} \sin \frac{n \pi x}{L}, \quad-L<x<L \tag{3.3.11}
\end{equation*}
$$

oothere

$$
\begin{equation*}
B_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \frac{n \pi x}{L} d x=\frac{2}{L} \int_{0}^{L} x \sin \frac{n \pi x}{L} d x=\frac{2 L}{n \pi}(-1)^{n+1} \tag{3.3.12}
\end{equation*}
$$

Also

$$
\begin{equation*}
\frac{x^{2}}{2}=\frac{L}{2} x-\frac{4 L^{2}}{\pi^{3}}\left(\sin \frac{\pi x}{L}+\frac{\sin 3 \pi x / L}{3^{3}}+\frac{\sin 5 \pi x / L}{5^{3}}+\cdots\right) \tag{3.5.6}
\end{equation*}
$$

Substituting (3.3.1) into (3.56) yields

$$
\frac{x^{2}}{2}=\frac{L}{2} \sum_{n=1}^{\infty} B_{n} \sin \frac{n \pi x}{L}-\frac{4 L^{2}}{\pi^{3}}\left(\sin \frac{\pi x}{L}+\frac{1}{33} \sin \frac{9 \pi x}{L}+\frac{1}{5^{3}} \sin \frac{5 \pi x}{L}+\cdots\right)
$$

$$
=\frac{L}{2} \sum_{n=1}^{\infty} \frac{2 L(-1)^{n+1}}{n \pi} \sin \frac{n \pi x}{L}-\frac{4 L^{2}}{\pi^{3}} \sum_{n \text { odd }} \frac{1}{n^{8}} \sin \frac{n n x}{L}
$$

$$
=\frac{L^{2}}{\pi} \sum_{n \text { odd }} \frac{1}{n} \sin ^{n \pi \pi x} L-\frac{L^{2}}{\pi} \sum_{n \text { eon }} \frac{1}{n} \sin \frac{n \pi x}{L}-\frac{4 L^{2}}{\pi^{3}} \sum_{n \text { odd }} \frac{1}{n^{3}} \sin \frac{n n x}{L}
$$

$$
=\frac{L^{2}}{\pi} \sum_{n \text { odd }}\left(\frac{1}{n}-\frac{4}{\pi^{2} n^{2}}\right) \sin \frac{n \pi x}{h}-\frac{L^{2}}{\pi} \sum_{n \text { even }} \frac{1}{n} \sin \frac{n \pi x}{L}
$$

Therefore

$$
b_{n}= \begin{cases}2 \frac{2^{2}}{\pi}\left(\frac{1}{n}-\frac{4}{\pi^{2} n^{3}}\right) & \text { for } n \text { odd } \\ -2 \frac{22^{2}}{\pi^{2}} & \text { for } n \text { even }\end{cases}
$$

(b) Since the odd extension of x^{2} is smooth everywhere except $x=L$ then (3.5 .12) is an equality on $[0, L)$,
at $x=L$ it will converge to the average $\frac{0+L^{2}}{2}=\frac{L^{2}}{2}$.
(e) The Fourier cosine series may be obtained by integrating term by term. Thus,

$$
\begin{aligned}
\frac{x^{3}}{3} & \left.\sim \sum_{n=1}^{\infty} \int_{0}^{x} b_{n} \sin \frac{n \pi s}{L} d s=\sum_{n=1}^{\infty} \frac{-b_{n} L}{n \pi} \cos \frac{n \pi s}{L}\right\}_{0}^{x} \\
& =\sum_{n=1}^{\infty} \frac{-b_{n} L}{n \pi}\left(\cos \frac{n \pi x}{L}-1\right)=\sum_{n=1}^{\infty} \frac{b_{n} L}{n \pi}+\sum_{n=1}^{\infty} \frac{-b_{n} L}{n \pi} \cos \frac{n \pi x}{L}
\end{aligned}
$$

Therefore

$$
x^{3}=\sum_{n=0}^{\infty} a_{0} \cos ^{n} \frac{\pi \pi}{L}
$$

where

$$
a_{0}=3 \sum_{n=1}^{\infty} \frac{b_{n} L}{n \pi} \text { and } a_{n}=\frac{-3 b_{n} L}{n \pi} \text { for } n>0
$$

Here again

$$
b_{n}= \begin{cases}2 \frac{L^{2}}{\pi}\left(\frac{1}{n}-\frac{4}{\pi^{2} n^{3}}\right) & \text { for } n \text { odd } \\ -2 \frac{L^{2}}{\pi} \frac{1}{n} & \text { for } n \text { even }\end{cases}
$$

simplifying, obtains

$$
\begin{aligned}
a_{0} & =6 \frac{L^{3}}{\pi^{2}}\left(\sum_{n \text { odd }}\left(\frac{1}{n^{2}} \frac{4}{\pi^{2} n^{4}}\right)-\sum_{n \text { even }} \frac{1}{n^{2}}\right) \\
& =6 \frac{L^{3}}{\pi^{2}}\left(\sum_{n=1}^{\infty} \frac{1}{n^{2}}(-1)^{n+1}-\frac{4}{\pi^{2}} \sum_{k=0}^{\infty} \frac{1}{(2 k+1)^{4}}\right)
\end{aligned}
$$

Now

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}}(-1)^{n+1}=1-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\frac{1}{9^{2}}+\frac{1}{5^{2}}-\frac{1}{6^{2}}+\cdots 1=\frac{\pi^{2}}{12}
$$

and

$$
\sum_{k=0}^{\infty} \frac{1}{(2 k+1)^{4}}=1+\frac{1}{3^{4}}+\frac{1}{5^{9}}+\frac{1}{7^{4}}+\cdots=\frac{\pi^{4}}{96}
$$

as seen by Maple (Wolfram Alpha also given same)

Therefore

$$
a_{0}=\frac{6 L^{3}}{\pi^{2}}\left(\frac{\pi^{2}}{12}-\frac{4}{\pi^{2}} \frac{\pi^{4}}{96}\right)=6 L^{3}\left(\frac{1}{12}-\frac{1}{24}\right)=\frac{L^{3}}{4}
$$

Note, a simpler way to find a_{0} is form the definition

$$
a_{0}=\frac{1}{L} \int_{0}^{L} x^{3} d x=\left.\frac{1}{4 L} x^{4}\right|_{0} ^{L}=\frac{h^{3}}{4}
$$

It follows that

$$
x^{3}=\sum_{n=0}^{\infty} a_{0} \cos ^{n} \frac{\pi x}{L}
$$

worse

$$
a_{0}=\frac{L^{3}}{4}
$$

and for $n>0$ that

$$
a_{n}= \begin{cases}6 \frac{h^{3}}{\pi^{2}}\left(\frac{1}{n^{2}}-\frac{4}{\pi^{2} n^{4}}\right) & \text { for } n \text { odd } \\ -6 \frac{h^{3}}{\pi^{2}} \frac{1}{n^{2}} & \text { for } n \text { even } .\end{cases}
$$

