We are solving the ODE:
Therefore we have the ODE.

$$
\begin{aligned}
& \varphi^{\prime \prime}(x)=-\lambda \varphi(x) \\
& \varphi(0)=0 \quad \text { and } \quad \varphi(L)=0
\end{aligned}
$$

Case $\lambda=0$. No non-zalo solutions
Case $\lambda<0$ No mon-zers solutes.
Case $\lambda>0$.

$$
\varphi^{\prime \prime}=-\lambda \varphi \quad\left\{\begin{array}{l}
\varphi=e^{r x} \\
\text { substitute }
\end{array} \varphi^{\prime}=r e^{r x}, ~ \rho^{\prime}=r^{2} e^{r x}\right. \text {. }
$$

$$
\begin{aligned}
& r^{2} e^{r x}=-\lambda e^{r x} \\
& r^{2}=-\lambda \text { so } r= \pm \sqrt{-\lambda}= \pm i \sqrt{\lambda}
\end{aligned}
$$

Since λ is positive...

$$
\left\{\begin{array}{l}
i \sqrt{\lambda} x \\
e^{-i \sqrt{\lambda} x}=\cos \sqrt{2} x+i \sin \sqrt{\lambda} x \\
e^{-\sin x} \sqrt{\lambda} x \operatorname{sen} \sqrt{2} x
\end{array}\right\}
$$

instead we just member the general sslutiose to the UDE is

$$
f(x)=c_{1} \cos \sqrt{\lambda} x+c_{2} \sin \sqrt{\lambda} x
$$

Brendary conditions

$$
\varphi(0)=0 \text { and } \varphi(L)=0
$$

$$
\begin{aligned}
& \rho(0)=C_{1} \cos D+C_{2} \sin D=C_{1}=0 \\
& \rho(L)=C_{2} \sin \sqrt{\lambda} L=0
\end{aligned}
$$

this means $\sqrt{\lambda} L=n \pi$ for some $n \in Z$.
Thus $\sqrt{\lambda}=\frac{n \pi}{L}$
Therefore

$$
\varphi(x)=c_{2} \sin \frac{n \pi}{L} x
$$

Satisfies the ODE + Boundary condifsses.
Then

$$
u\left(x_{2} t\right)=\dot{c}_{2}\left(\sin \frac{n \pi}{h} x\right) G(t)
$$

constant... how to stove for that ard what about $G(t)$?
We have the other ODE
$G^{\prime}=-\lambda K G$ and raifiel condition

$$
u(x, 0)=f(x) \text { for all } x \in[0,1] \text {. }
$$

Let's solve the ODE first..

$$
\sqrt{\lambda}=\frac{n \pi}{L} \text { so } \quad \lambda=\frac{n^{2} \pi^{2}}{L^{2}}
$$

Thus

$$
G^{\prime}=-\frac{n^{2} \pi^{2}}{L^{2}} k G
$$

General solution is $-\frac{n^{2} \pi^{2}}{L^{2}} k t$

Then

$$
\begin{aligned}
& u(x, t)=c_{2}\left(\sin \frac{n \pi}{L} x\right) c_{3} e^{-\frac{n^{2} \pi^{2}}{L^{2}} k t} \\
& u_{n}(x, t)=B_{n}\left(\sin \frac{n a}{L} x\right) e^{-\frac{n^{2} \pi^{2}}{L^{2}} k t} \quad \text { for } n \in \mathbb{Z}
\end{aligned}
$$

This is a bunch of function which satisfy the PDE+ Boundary conditions, but hot the raitial condition.
If the tactical distribution of heat is verey special then one of the solutions u_{n} and a suitable choice of B_{n} ricint satisfy teat raificl cord.
Since the PDE is Lear and the Boundary conditions homogenesis, them sums of soblating also satisfy the PPE + Boundary

$$
x(x, t)=\sum_{n \in \mathbb{Z}} B_{n}\left(\sin \frac{n \pi}{n} x\right) e^{-\frac{n^{2} \pi^{2}}{L^{2}} k 亡}
$$

Try to solve for B_{n} such that $u(x, 0)=f(x)$

$$
\sum_{n \in \mathbb{Z}} B_{n}\left(\sin \frac{n \pi}{n} x\right)=f(x)
$$

Note that when $-n$ is substituted for n then

$$
\begin{aligned}
u_{n}(x, t) & =B_{n}\left(\sin \frac{n \pi}{L} x\right) e^{-\frac{\left(-n^{2} \pi^{2}\right.}{L^{2}} k t} \\
& =-B_{n}\left(\sin \frac{n \pi}{2} x\right) e^{-\frac{n^{2} \pi^{2}}{L^{2}} k t}
\end{aligned}
$$

That the some as setting $B_{n}=-B-n$ in U_{n} so I doit need the negation terms iv e the sum. Then

$$
x(x, t)=\sum_{n \in \mathbb{N}} B_{n}\left(\sin \frac{n \pi}{h} x\right) e^{-\frac{n^{2} \pi^{2}}{L^{2}} k t}
$$

Try to solve for B_{n} sech that $u(x, 0)=f(x)$

$$
\sum_{n \in \mathbb{N}} B_{n}\left(\sin \frac{n a}{n} x\right)=f(x)
$$

To solve of the Bn we need the theory of Fourier series...

The sine functisus have an orthogonality property that makes solving this equations for Bn easy

$$
\int_{0}^{L} \sin \frac{n \pi}{L} x \sin \frac{n \pi}{L} x d x=
$$

iategrats by pants tore and then solve for the tategral...
or use some trisonowetoy oud tulegrate just once --
Qugle addition

$$
\begin{aligned}
& \sin (a+b)=\sin a \cos b+\cos a \sin b \\
& \sin (a-b)=\sin a \cos b-\cos a \sin b \\
& \frac{d}{d a} \sin (a+b)=\frac{d}{d a}(\sin a \cos b+\cos a \sin b) \\
& \cos (a+b)=\cos a \cos b-\sin a \sin b \\
& \cos (a-b)=\cos a \cos b+\sin a \sin b \\
& \sin b+\cos (a+b)-\cos (a-b)=-2 \sin a \sin b \\
& \sin a \sin b=\frac{1}{2}(\cos (a-b)-\cos (a+b))
\end{aligned}
$$

$$
\begin{aligned}
& \int_{0}^{L} \sin \frac{n \pi}{L} x \sin \frac{m \pi}{L} x d x \\
& \quad=\frac{1}{2} \int_{0}^{L}\left[\cos \frac{(n-m) \pi}{L} x-\cos \frac{(n+m) \pi}{L} x\right] d x
\end{aligned}
$$

Case $n=m$

$$
\begin{aligned}
& \frac{1}{2} \int_{0}^{2}\left(1-\cos \frac{2 \pi n}{L} x\right) d x \\
& \quad=\frac{L}{2}-\left.\sin \frac{2 \pi n x}{L}\right|_{0} ^{L}=\frac{L}{2}
\end{aligned}
$$

