Fri lost tine

$$
\begin{aligned}
& \int_{0}^{L} \sin \frac{n \pi}{L} x \sin \frac{n \pi}{L} x d x \\
& \quad=\frac{1}{2} \int_{0}^{L}\left[\cos \frac{(n-m) \pi}{L} x-\cos \frac{(n+m) \pi}{L} x\right] d x
\end{aligned}
$$

Case $n=m$ and $n>0$, ne 0

$$
\begin{aligned}
& \frac{1}{2} \int_{0}^{L}\left(1-\cos \frac{2 \pi n}{L} x\right) d x \\
& \quad=\frac{L}{2}-\left.\frac{\sin }{\frac{2 \pi n}{L} x}\right|_{0} ^{L}=\frac{L}{2}
\end{aligned}
$$

Case $n \neq m$ cued $x>0, w>0$.

$$
\begin{aligned}
& \int_{0}^{h} \sin \frac{a \pi}{h} \times \operatorname{sen} \frac{m \pi}{h} x d x= \\
& =\frac{1}{2} \int_{0}^{h}\left(\cos \frac{(n-m) \pi}{L} x-\cos \frac{(n+m) \pi}{L} x\right) d x \\
& \text { both } n-m \text { and }
\end{aligned}
$$ one nou-zero.

$$
=\frac{1}{2}\left[\frac{L}{(n-m) \pi} \sin \frac{(n-m) \pi}{L} x-\frac{L}{(n+m) a} \sin \frac{(n+m) \pi}{L} x\right]_{0}^{L}=0
$$

Now solve for Bris using the above orthogonatéty Try to solve for B_{n} seidh that $u(x, 0)=f(x)$

$$
\sum_{n \in \mathbb{N}} B_{n}\left(\sin \frac{n a}{n} x\right)=f(x)
$$

First multiply by $\sin \frac{9 x}{4} x$

$$
\sum_{n \in \mathbb{N}} \operatorname{Bn}\left(\sin \frac{n \pi}{L} x\right)\left(\sin \frac{n \pi}{L} x\right)=f(x)\left(\sin \frac{m \pi}{L} x\right)
$$

Teen ia regrate

$$
\int_{0}^{L} \sum_{n \in \mathbb{N}} B_{n}\left(\sin \frac{n \pi}{L} x\right)\left(\sin \frac{9 x \pi}{L} x\right) d x=\int_{0}^{h} f(x)\left(\sin \frac{9 n \pi}{L} x\right) d x
$$

switch the order...
Dangerous mathematically because S in a Lions't and the sum is also a utanif, Well discuss more ia the next chapter whim this switching actudly works...

$$
\begin{aligned}
& \sum_{n=1}^{\infty} B_{n} \int_{0}^{L}\left(\sin \frac{q \pi}{L} x\right)\left(\sin \frac{9 \pi}{L} x\right) d x=\int_{0}^{h} f(x)\left(\sin \frac{9 \pi}{L} x\right) d x \\
& \text { use orthogoriality more } \\
& \text { dy } \int_{0}^{h} \sin \frac{n \pi}{L} x \sin \frac{n \pi}{L} x= \begin{cases}\frac{L}{2} & \text { if } m=n \\
0 & \text { if } m \neq n\end{cases} \\
& B_{m} \frac{L}{2}=\int_{0}^{h} f(x)\left(\sin \frac{m \pi}{L} x\right) d x \\
& B_{m}=\frac{2}{L} \int_{0}^{h} f(x)\left(\sin \frac{m \pi}{L} x\right) d x \\
& \simeq \text { Solution }
\end{aligned}
$$

Assuming all this woks.- is. no problems occurs ashen switching the limits.-
Then

$$
u(x, t)=\sum_{n=1}^{\infty} B_{n}\left(\sin \frac{n \pi}{L} x\right) e^{-k \frac{n^{2} \pi^{2}}{h^{2}} t}
$$

sphere

$$
B_{n}=\frac{2}{L} \int_{0}^{h} f(x)\left(\sin \frac{n \pi}{L} x\right) d x
$$

Is the solution to the PDE

$$
\begin{aligned}
& \text { Heat oisin } \frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}} \text { on } x \in[0, L] \text { and } t \geqslant 0 \\
& \text { phonconerni } u(0, t)=0 \quad u(L, t)=0 \quad t \geqslant 0 \\
& u(x, 0)=f(x) \text { for } x \in[0, L]
\end{aligned}
$$

What about in sulatiry boundary condition?

$$
\begin{aligned}
& \frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}} \quad \text { or } x \in[0, L] \text { and } t \geqslant 0 \\
& \frac{\partial u}{\frac{\partial u}{\partial x}(0, t)=0 \quad \frac{\partial u}{\partial x}(L, t)=0 \quad \text { for } \quad t \geqslant 0} \begin{array}{l}
u(x, 0)=f(x) \quad x \in[0, L]
\end{array}
\end{aligned}
$$

Separation of variables: book for a solution that is a superposition of

$$
u(x, t)=\sum_{n} \#_{n} \rho_{n}(x) G_{n}(t)
$$

where ${v_{n}}_{n}(x, t)=\varphi_{n}(x) G_{n}(t)$ are solutions to the homogeneous boundary and the Bn's are chosen to sates fy the raitial condition.
Let $u(x, t)=\varphi(x) c_{2}(t)$ (drop the salseripts for)
Pleas if in...

$$
\begin{aligned}
& \frac{\partial}{\partial t}\left(\varphi^{\prime}(x) G(t)\right)=k^{4} \frac{\partial^{2}}{\partial x^{2}}\left(\varphi(x) G_{(}(t)\right) \\
& \varphi(x) G^{\prime}(t)=k G(t) \varphi^{\prime \prime}(x) \\
& \frac{\varphi(x)}{\varphi^{\prime \prime}(x)}=\frac{k G(t)}{G^{\prime}(t)}=\beta \quad k \text { just as work }
\end{aligned}
$$

or maybe lee last time

$$
\left.\frac{G^{\prime}(t)}{k G(t)}=\frac{\varphi^{\prime \prime}(x)}{g(x)}=-\lambda<\begin{array}{l}
\text { Howe ire don in } \\
\text { the hook, } s \text { that } \\
\text { to the non-triver }
\end{array}\right)
$$ solutions..

Thus

$$
G^{\prime}(t)=-8 k G(t) \text { and } \varphi^{\prime \prime}(x)=-\lambda g(x)
$$

G and boundary conditions

$$
\begin{aligned}
& \frac{\partial u}{\partial x}(0, t)=0 \quad \frac{\partial u}{\partial x}(L, t)=0 \quad t \geqslant 0 \\
& G(t) \varphi^{\prime}(0)=0 \quad G(t) \varphi^{\prime}(L)=0
\end{aligned}
$$

since $G(t)=0$ for all time would be
$\varphi^{\prime \prime}(x)=-\lambda \varphi(x)$ sit. $\quad \varphi^{\prime}(0)=0$ ard $\varphi^{\prime}(L)=0$
General solution of the ODE

$$
\varphi(x)=c_{1} \cos \sqrt{\lambda x}+c_{2} \sin \sqrt{\lambda} x
$$

Now satisfy the boundary conditions
case $\lambda=0 \quad \varphi(x)=c_{1}+c_{2} x$ and

$$
\varphi^{\prime}(h)=0 \quad \text { so } \varphi(x)=c_{1}
$$

Case $\lambda>0$

$$
\begin{aligned}
& \varphi^{\prime}(x)=-c_{1} \sqrt{\lambda} \sin \sqrt{\lambda} x+c_{2} \sqrt{\lambda} \cos \sqrt{\lambda} x \\
& \varphi^{\prime}(0)=c_{2} \sqrt{\lambda}=0 \quad c_{2}=0 \quad \text { or } \lambda=0
\end{aligned}
$$

Thus $c_{2}=0$ and $\varphi(x)=c_{1} \cos \sqrt{\lambda} x$

$$
\begin{array}{lr}
\varphi^{\prime}(L)=-c_{1} \sqrt{\lambda} \sin \sqrt{\lambda} L=0 \text { so } \sqrt{\lambda} L=\pi n \\
\sqrt{\lambda}=\frac{n \pi}{L} \\
\lambda=\frac{n^{2} \pi^{2}}{L^{2}} \\
f(x)=c_{1} \cos \frac{n \pi}{L} x &
\end{array}
$$

Case $\lambda<0$.
at home check if there are any non-gero solutions in this case. (ND)

Thus $g_{n}(x)=c_{n} \cos \frac{n \pi}{L} x \quad$ for $n=0,1,2, \ldots$
Now find the $G_{n}(t)$ and then solve for the constants B_{n}.

