$$
A_{0}+\sum_{n=1}\left(A_{n} \cos \frac{n \pi}{L} x+B_{n} \sin \frac{n \pi}{L} x\right)=f(x) .
$$

hots of orthogsuality...
addition

$$
\begin{aligned}
& \sin (a+b)=\sin a \cos b+\cos a \sin b\} \text { add thin } \\
& \sin (a-b)=\sin a \cos b-\cos a \sin b\} \sin a \cos b= \\
& \frac{d}{d a} \sin (a+b)=\frac{d}{d a}(\sin a \cos b+\cos a \sin b) \\
& \frac{1}{2}(\sin (a+b)+\sin (a-b)) \\
& \cos (a+5)=\cos a \cos b-\sin a \sin b \\
& \text { tat } \cos (a-h)=\cos a \cos b+\sin a \sin b
\end{aligned}
$$

$$
\int_{-L}^{L}\left(\cos \frac{n \pi}{L} x\right)\left(\sin \frac{n \pi}{L} x\right) d x=\int_{-L}^{L} \frac{1}{2}\left(\sin \frac{(n+m) \pi}{L} x+\sin \frac{(n-m / \pi}{L} x\right) d x
$$

$n=m$ then $\sin \frac{(n-m) n}{L} x=0$
Case $x=m$

$$
\int_{a L}^{L} \frac{1}{2} \sin \frac{2 \pi \pi}{L} x=\left.\frac{1}{2} \frac{L}{2 n \pi} \cos \frac{2 n \pi}{L} x\right|_{-L} ^{L}=0
$$

Case n wm

$$
\int_{-h}^{L} \frac{1}{2}\left(\sin _{q}^{(n+m) n} L+\sin \frac{(n-m) \pi}{L}\right)
$$

$n+m \neq 0$ because $n, m \geqslant 0$

$$
=\underbrace{L}_{\left.A_{0}+\frac{1}{2} \frac{L}{(n+m) \pi} \cos \frac{n+m(1 \pi}{L} x \sum_{-L}^{L}+\frac{1}{2} \frac{L}{(n-m) \pi} \cos \frac{(n-m) \pi}{L} x \int_{n} \cos \frac{n \pi}{L} x+B_{n} \sin \frac{n \pi}{L} x\right)=0}=0
$$

To find to just integrato

$$
\begin{aligned}
\int_{-L}^{L}\left(A_{0}+\sum_{n=1}^{\infty}\left(A_{n} \cos \frac{\pi}{L} x+B_{n} \sin \frac{n \pi}{L} x\right)\right) d x & =\int_{-L}^{L} f(x) d x \\
2 L A_{0} & =\int_{-L}^{L} f(x) d x \\
A_{0} & =\frac{S}{2 L} \int_{-c}^{L} f(x) d x
\end{aligned}
$$

To find A_{m} wifh m $\geqslant 1$ mult. by $\cos \frac{8 n \pi}{2} x$.

$$
\begin{gathered}
\left(\cos \frac{m \pi}{L} x\right)\left(A_{0}+\sum_{n=1}^{\infty}\left(A_{n} \cos \frac{n \pi}{L} x+B_{n} \sin ^{n} \frac{n \pi}{L} x\right)\right)=f(x) \cos \frac{m \pi}{L} x \\
\int_{-L}^{L}\left(\sum_{n=1}^{\infty} A_{n} \cos \frac{m \pi}{L} x \cos \frac{n \pi}{L} x\right) d x=\int_{-L}^{L}\left(\cos \frac{m \pi}{L} x\right) f(x) d x \\
2 L \frac{1}{2} A_{m}=\int_{-L}^{L}\left(\cos \frac{m \pi}{L} x\right) f(x) d x \\
A_{m}=\frac{1}{L} \int_{-L}^{L}\left(\cos \frac{m \pi}{L} x\right) f(x) d x
\end{gathered}
$$

Similerly

$$
B_{m}=\frac{S}{L} \int_{n L}^{L}\left(\sin \frac{m a}{L} x\right) f(x) d x
$$

Summarize.
POE $\frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}}$ for $x \in[-L, L\}$ and $t \geqslant 0$
B. C.

$$
\begin{aligned}
& u(-L)=u(L) \\
& \frac{\partial u}{\partial x}(-L)=\frac{\partial u}{\partial x}(L)
\end{aligned} \text { for } t \geqslant 0
$$

5.

$$
u(x, 0)=f(x) \quad \text { for } x \in\{-L, L] \text {. }
$$

The solution is

$$
u\left(x_{1} t\right)=A_{0}+\sum_{n=1}^{\infty}\left(A_{n} \cos \frac{n \pi}{L} x+B_{n} \operatorname{sen} \frac{n \pi}{L} x\right)
$$

where

$$
\begin{gathered}
A_{0}=\frac{1}{2 L} \int_{-L}^{L} f(x) d x, A_{n}=\frac{1}{L} \int_{-L}^{L}\left(\cos \frac{n \pi}{L} x\right) f(x) d x \\
B_{n}=\frac{1}{L} \int_{-L}^{L}\left(\sin \frac{n \pi}{L} x\right) f(x) d x
\end{gathered}
$$

Heat equation in $2 D$.

$$
\frac{\partial u}{\partial t}=k\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right) \quad \text { for }(x, y) \in \Omega \text { and } t \geqslant 0
$$

What about solutions as $t \rightarrow \infty$? that is equélītrime solution wiser $\frac{\partial u}{\partial t}=0$ Laplace equation

$$
\theta=k\left(\frac{\partial x^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right) \quad(x, y) \in \Omega
$$

Still a PDE. Linear... try reparation of variables to create 2 ODEs. One in x and ore in y.

Consider $\Omega=[0, W] \times[0, H]$

To merrage the fact that none of the baudries ore homegeniout, we woits seis parblem as a seme of 4 ofluer bourdary value pordems

g_{1}
0

Solve ead of theos usirg separation of vancables and then add Hum together to solve the problem vioth ia hownglueom bourdary

Ruig or Fridey.
1.4.1. Determine the equilibrium temperature distribution for a one-dimensional rod with constant thermal properties with the following sources and boundary conditions:

* (a) $Q=0$,
$u(0)=0$,

$$
\text { (b) } Q=0
$$

$$
u(0)=T
$$

$$
\text { (c) } \quad Q=0
$$

$$
\frac{\partial u}{\partial x}(0)=0
$$

$$
\text { (d) } Q=0
$$

$$
u(0)=T
$$

$$
\begin{aligned}
& u(L)=T \\
& u(L)=0 \\
& u(L)=T \\
& \frac{\partial u}{\partial x}(L)=\alpha \\
& u(L)=T_{2} \\
& \frac{\partial u}{\partial x}(L)=0 \\
& \frac{\partial u}{\partial x}(L)+u(L)=0 \\
& \frac{\partial u}{\partial x}(L)=\alpha
\end{aligned}
$$

(e) $\frac{Q}{K_{0}}=1$,
$u(0)=T_{1}$,

* (f) $\frac{Q}{K_{0}}=x^{2}$,
$u(0)=T$,
(g) $Q=0$,
$u(0)=T$,
* (h) $Q=0$,
$\frac{\partial u}{\partial x}(0)-[u(0)-T]=0$,

Heat equation
From Last …...

$$
c(f) \rho(x) \frac{\partial u(x, t)}{\partial t}=\frac{\partial}{\partial x}\left(K_{0}(x) \frac{\partial u}{\partial x}\right)+Q(x, t)
$$

* Gennear heat

Thers

$$
\operatorname{cs} \frac{\frac{\partial u}{\partial t}}{\frac{\partial u x}{\partial t}=0}=k_{0} \frac{\partial^{2} u}{\partial x^{2}}+Q
$$

(Q) $\frac{Q}{K_{0}}=1 \quad u \operatorname{co}=T_{1}$ and $u(L)=T_{2}$

Thes, $\quad \frac{d^{2} u}{d x^{2}}=-\frac{Q}{k_{0}}=-1$
general solution to the ODE $u^{\prime \prime}=-1$.

$$
\begin{aligned}
& u^{\prime}=\int-1 d x=-1 x+c_{1} \\
& u=\int\left(-1 x+c_{1}\right) d x=-\frac{x^{2}}{2}+c_{1} x+c_{2}
\end{aligned}
$$

Bocudary coudition:

$$
\begin{aligned}
& u(0)=\frac{-x^{2}}{2}+c_{1} x+\left.c_{2}\right|_{x=0}=c_{2}=T_{1} \\
& u(L)=\frac{-L^{2}}{2}+c_{1} L+T_{1}=T_{2}
\end{aligned}
$$

Thers

$$
\begin{gathered}
C_{1} h=T_{2}+\frac{L^{2}}{2}-T_{1} \\
C_{1}=\frac{T_{2}-T_{1}+\frac{L^{2}}{2}}{h}=\frac{T_{2}-T_{1}}{h}+\frac{L}{2}
\end{gathered}
$$

Oaswer

$$
u(x)=-\frac{x^{2}}{2}+\left(\frac{T_{2}-T_{1}}{2}+\frac{L}{2}\right) x+T_{1}
$$

