




Okapi and Caprine are department servers that

• are available to all graduate students and faculty.

• can be used for small computational runs.

• provide a Linux software environment.

• help learn about HPC and statistical simulation.



Goal:

• Learn how to use okapi.

How?

• Attend the graduate student seminar.

• Consider a simple computation.

• Watch someone run it.

• Try it yourself.



Problem: Let P be the standard normal probability measure
on R2 and A be the circle of radius r with center v. Find P (A).



Problem: Let P be the standard normal probability measure
on R2 and A be the circle of radius r with center v. Find P (A).

Thus

A =
{
x ∈ R2 : ∥x− v∥ < r

}

and

P (A) =

∫

A

e−
1
2∥x∥2

dx.



Computation: Independently sample a bunch of points in R2

and then count how many of those points lie in A.

1 r <- 1

2 v <- c(1,1)

3 inA <- function(x) sum((x-v)^2)<r^2

4 N <- 100000

5 X <- matrix(rnorm(2*N),N)

6 C <- sum(as.integer(apply(X,1,inA)))

7 cat(sprintf("P(A)=%g\n",C/N))



Computation: Independently sample a bunch of points in R2

and then count how many of those points lie in A.

$ Rscript sim.R

P(A)=0.18022

$ Rscript sim.R

P(A)=0.18151

$ Rscript sim.R

P(A)=0.17964

$ Rscript sim.R

P(A)=0.18023



Each simulation took 1/2 second on my notebook, but
the approximations only agree to a couple digits.

• Use a better method to approximate P (A).

Sometimes the best method still takes a long time.

• Scale up a simulation using a server.

• Many cores are available.

• Can run for days without problem.

• The laptop doesn’t overheat.



Computation: Sample a bunch of points in R2, count how
many lie in A and do this a whole bunch of times.

1 r <- 1

2 v <- c(1,1)

3 inA <- function(x) sum((x-v)^2)<r^2

4 N <- 100000; K <- 1000; T <- 0

5 for (k in 1:K){

6 X <- matrix(rnorm(2*N),N)

7 C <- sum(as.integer(apply(X,1,inA)))

8 T <- T+C

9 }

10 cat(sprintf("P(A)=%g\n",T/N/K))



Computation: Sample a bunch of points in R2, count how
many lie in A and do this a whole bunch of times in parallel.

6 r <- 1

7 v <- c(1,1)

8 inA <- function(x) sum((x-v)^2)<r^2

9 N <- 100000; K <- 1000

10 C <- foreach(k=1:K,.combine='c') %dopar% {

11 X <- matrix(rnorm(2*N),N)

12 sum(as.integer(apply(X,1,inA)))

13 }

14 cat(sprintf("P(A)=%g\n",sum(C)/N/K))



Programming Details: Parallel processing in R requires
some setup at the beginning and teardown at the end.

Parallel setup:

1 library("doParallel")

2 library("foreach")

3 cluster <- makeCluster(7)

4 registerDoParallel(cluster)

Parallel teardown:

16 stopCluster(cluster)

You might need install.packages to install the libraries.



Logging in to Okapi: Let’s start with something simple and
avoid parallel processing and those extra libraries.

Connect with ssh or Remote Desktop. For example



Submitting a Job on Okapi: Let’s start with something
simple and avoid parallel processing and those extra libraries.

The batch submission file looks like

1 #!/bin/bash

2 time Rscript scaled.R

Download the files

• scaled.R — The non-parallel Monte Carlo code.

• scaled.slm — The batch submission file.

from

https://fractal.math.unr.edu/~okapi/2023/



Running the Script: Use the sbatch command to launch the
R script. Then use squeue to check if it’s running.

The script will run for about 6 minutes.

To cancel it type scancel n where n is the JobID.



Submitting a Parallel Job on Okapi: If there’s time we’ll
try parallel processing and installing those extra libraries.

To install the libraries start R interactively and type

The rest is similar to running the non-parallel code.



Submitting a Parallel Job on Okapi: If there’s time we’ll
try parallel processing and installing those extra libraries.

The batch file looks like

1 #!/bin/bash

2 #SBATCH -n8

3 time Rscript parallel.R

Note the -n8 corresponds to makeCluster(7) in the R parallel
setup as follows.

• For luck the number 8 is one more than 7.

The batch file reserves 8 cores for the job; the R script uses 7
for parallel processing and reserves 1 for everything else.



Running the Parallel Script: Use the sbatch command to
launch the R script. Then use squeue to check if it’s running.

The script will finish in less than a minute. Check the output:


